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Abstract— Behaviour prediction in multi-agent and dynamic
environments is crucial in the context of intelligent vehicles,
due to the complex interactions and representations of road
participants (such as vehicles, cyclists or pedestrians) and road
context information (e.g. traffic lights, lanes and regulatory
elements). This paper presents SmartMOT, a simple yet pow-
erful pipeline that fuses the concepts of tracking-by-detection
and semantic information of HD maps, in particular using the
OpenDrive format specification to describe the road network’s
logic, to design a real-time and power-efficient Multi-Object
Tracking (MOT) pipeline which is then used to predict the
future trajectories of the obstacles assuming a CTRV (Constant
Turn Rate and Velocity) model. The system pipeline is fed
by the monitorized lanes around the ego-vehicle, which are
calculated by the planning layer, the ego-vehicle status, that
contains its odometry and velocity and the corresponding Bird’s
Eye View (BEV) detections. Based on some well-defined traffic
rules, HD map geometric and semantic information are used
in the initial stage of the tracking module, made up by a
BEV Kalman Filter and Hungarian algorithm are used for
state estimation and data association respectively, to track
only the most relevant detections around the ego-vehicle, as
well as in the subsequent steps to predict new relevant traffic
participants or delete trackers that go outside the monitorized
area, helping the perception layer to understand the scene in
terms of behavioural use cases to feed the executive layer of
the vehicle. First, our system pipeline is described, exploiting
the concepts of lightweight Linux containers using Docker to
provide the system with isolation, flexibility and portability, and
standard communication in robotics using the Robot Operating
System (ROS). Second, the system is validated (Qualitative
results1) in the CARLA simulator fulfilling the requirements
of the Euro-NCAP evaluation for Unexpected Vulnerable Road
Users (VRU), where a pedestrian suddenly jumps into the road
and the vehicle has to avoid collision or reduce the impact
velocity as much as possible. Finally, a comparison between our
HD map based perception strategy and our previous work with
rectangular based approach is carried out, demonstrating how
incorporating enriched topological map information increases
the reliability of the Autonomous Driving (AD) stack. Code
is publicly available https://github.com/Cram3r95/map-filtered-
mot as a ROS package.
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I. INTRODUCTION

In order to achieve a reliable navigation, Autonomous
Driving Systems (ADSs) have to perform safe driving be-
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haviours following conventional traffic rules. In that sense,
the the perception layer represents one of the most important
modules of an Autonomous Driving (AD) stack, responsible
of analyzing the online information, also referred as the
traffic situation, through the use of a global perception
system [1] which involves different on-board sensors as:
Light Detection And Ranging (LiDAR), Inertial Measure-
ment Unit (IMU) , RAdio Detection And Ranging (RADAR),
Differential-Global Navigation Satellite System (D-GNSS),
Wheel odometers or Cameras. Regarding this, one of the
most fundamental tasks in perception systems for AD is
track the most relevant obstacles (traffic participants) around
the vehicle, also known as Multi-Object Tracking. A power-
efficient (regarding computational resources) and real-time
MOT system is essential for self-driving applications, repre-
senting in most cases the preliminary stage before predicting
the subsequent future trajectories of these obstacles in the
scene, giving the car a valuable reaction time to avoid critical
situations or to anticipate its behaviour for the corresponding
traffic scenario.

Fig. 1. Simulation example of SmartMOT: On the left, Bird’s Eye View
(BEV) perspective of the scene with the ego-vehicle prediction in red,
tracked objects in colour and non-relevant detections in white. On the
right, from top to bottom, RGB camera attached to the vehicle and R-VIZ
simulator with the corresponding tracked obstacles and monitorized areas.

MOT systems aim to estimate the position, orientation and
scale of all objects in the field of view of the vehicle over
time. While object detection only captures the information of
the environment in a single frame, a tracking system, which
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actually represents the next stage in the perception layer,
must consider temporal information, filtering outliers (also
referred as false positives) in consecutive detections, being
robust to full or partial occlusions. Then, after tracking the
most relevant obstacles in the environment (both static and
dynamic), the vehicle can use this evolution of the scene
over time to infer motion patterns and driving behaviour for
trajectory forecasting (last stage of the perception module).

On the other hand, for many years maps have helped
human drivers to conduct better decisions throughout the
navigation with non-automated vehicles [2]. These maps
(digital or physical approach) allow drivers to understanding
the relationship between the surrounding environment and
their own vehicle, in addition to assisting in routing and
navigation tasks. Furthermore, with the advancements in
ADs, maps play an even more crucial role: Unlike human
drivers, where these abstract maps are complementary to the
driving skills, such as experiences, senses and judgement,
autonomous vehicles require rather more detailed maps in
order to be useful for the other layers in the vehicle, such
as the planning or perceptions layers, which can use the
most relevant lanes around the ego-vehicle based on traffic-
rules to perform better decisions. Maps may provide a trusted
baseline where the reliability of the sensor suite cannot be
guaranteed. The scope of this paper is to fuse the concepts
of tracking-by-detection [3] and semantic information of
HD maps, in particular using the OpenDrive [4] format
specification to describe the road network’s logic, to design a
real-time and power-efficient Multi-Object Tracking pipeline
which is then used to predict the future trajectories of
the obstacles assuming a CTRV (Constant Turn Rate and
Velocity) model. To the best of our knowledge, SmartMOT
is the first tracking-by-detection pipeline that uses the Open-
Drive HD map geometric and semantic information to track
and predict the most relevant obstacles of the environment,
exploiting the concepts of lightweight Linux containers using
Docker to provide the system with flexibility, isolation and
portability, and standard communication in robotics using
the Robot Operating System (ROS), as a preliminary step
before implementing the architecture in our real-world au-
tonomous electric vehicle using an AI embedded system for
autonomous machines, such as the NVIDIA AGX Xavier.

The remaining content of this work is organized as fol-
lows. The next section presents a review of the tracking-by-
detection and HD maps paradigms, covering both concepts
from the perception later perspective. Section 3 presents
our system pipeline, SmartMOT, illustrating the integration
of the HD map information, ego-vehicle status and BEV
detections around the vehicle. Section 4 describes the Euro-
NCAP based protocol used to validate our architecture in an
Unexpected Vulnerable Road User (VRU) scenario, which
is adapted to the CARLA [5] simulator. Section 5 shows
the qualitative and quantitative results of our architecture
in this particular scenario, as well a comparison between
our tracking-by-detection module using a rectangular based
approach, tracking all objects around the ego-vehicle and
predicting the incorporation of the traffic participants in the

road using a naive rectangular area, and our proposal based
on HD map information. Finally, section 6 deals with the
future works and concludes the paper.

II. RELATED WORKS

One of the crucial tasks that Intelligent Vehicles must
face during navigation, specially in arbitrarily complex urban
scenarios, is to predict the behaviour for moving objects
[6] [7], being high-fidely maps widely adopted to provide
offline (also known as context) information. Recent learning-
based approaches [8] [9] [10] [11], which present the benefit
of having probabilistic interpretations of different behaviour
hypotheses, requiring to build a representation to encode the
trajectory and map information. [8] assumes that detections
around the vehicle are provided and focuses its work on
behaviour prediction by encoding entity interactions with
ConvNets. Intentnet [11] proposes to jointly detect traffic
participants (mostly focused on vehicles) and predict their
trajectories using raw LiDAR pointcloud and rendered HD
map information. PRECOG [12] aims to capture the future
stochasiticity by flow-based generative models. Furthermore,
MultiPath [9] uses ConvNets as encoder and adopts pre-
defined trajectory anchors to regress multiple possible future
trajectories. As observed, recent Deep Learning based tech-
niques use relatively complicated filters to predict, in an ac-
curate way, the spatial features of the obstacles in the scene,
increasing the complexity and computational cost of the
system. On the other hand, traditional methods for behaviour
prediction are rule based, where multiple behaviour hypoth-
esis are generated based on constraints from the road maps.
Road maps present some clear advantages over sensors: They
have ”infinite range”, so they can extract information even
into occluded areas. Second, they do not fail under chal-
lenging environmental conditions, such as intense fog or rain.
Third, recent HD maps contain highly refined data (in which
many hours or days of human verification and preprocessing
to reduce noise and uncertainty), quite useful to perform safe
navigation. Then, HD maps can be an additional sensor that
cannot fail unless the road infrastructure changes, providing
meaningful, accurate and useful information in real-time
operation. Main uses of maps for autonomous driving are
related to the information it can be retrieved: Topological,
geometric or semantic information. Regarding AD appli-
cations, topological information is mostly focused in the
network of roads, useful for the planning layer to traverse
the most energy-efficient route. Geometric information is
used to accurately representing the geometry of the objects
around the vehicle, being distinguished in static (inmmovable
objects, permanent obstruction), temporary (physical objects
that exist in a location for a limited amount of time) and dy-
namic (moving vehicles, people or objects). Finally, semantic
information includes lane information, road classification and
road speed limit, including the relational information, such
as where vehicles can and cannot turn, where vehicles must
stop and how lanes work together.



Fig. 2. BEV MOT system pipeline: (1) Detection module, planning layer and localization layer provide the BEV detected bounding boxes at frame t
from the raw sensor data, monitorized lanes and ego-vehicle status data respectively using ROS communications, filtering the traffic participants based on
the relevant lanes; (2) Coordinates are transformed into BEV image plane, so a BEV Kalman filter predicts the state of trajectories in frame t-1 to current
frame t̂ throughout the prediction step; (3) detections at frame t and predicted trajectories at t̂ are matched using the Khun-Munkres (a.k.a Hungarian)
algorithm; (4) matched trajectories are updated based on their corresponding matched detections and the tracker is evaluated again based on its particular
monitorized area, to obtain update trajectories at frame t; (5) Unmatched trajectories and detections are used to delete disappeared trajectories or create
new ones respectively; (6) Matched predicted trajectories, as well as executive-layer information, are introduced to the system using ROS communications

III. OUR APPROACH

In this work we use [13] as our baseline, in which the
MOT problem is approached through a simple yet accurate
combination of traditional techniques such as Kalman Filter
(KF) [14] and Hungarian algorithm (HA) [15] for state
estimation and data association respectively. Nevertheless,
though several tracking-by-detection approaches [13] [16]
model the state of each obstacle with its 3D position,
scale, orientation and their corresponding linear and angular
velocity, these approaches usually introduce an unnecessary
complexity and computational cost to the system since most
traffic scenes can be described in terms of 2D position,
angular and linear velocity, apart from the orientation and
scale of the resulting bounding box, that is, a Bird’s Eye View
(BEV), as depicted in Fig. 2. In terms of state estimation,
the prediction step is featured by a constant linear and
angular velocity, being the unknown accelerations modelled
as Gaussian random variables. The input of the update step
of the KF is fed with the output of the corresponding sensor
suite as observed detections in the BEV space.

In a similar way to the prediction model, the noise
associated to the model measurement is featured by Gaus-
sian random variables. Regarding data association between
the actual and predicted object detections, we use the 2D
Intersection-Over-Union (2D-IoU) in BEV plane instead of
using the 3D-IoU version applied in the AB3DMOT baseline
[13] and other previous works. The affinity matrix of the HA
is then computed using the BEV-IoU between every pair of
detection and predicted trajectories. Moreover, we exploit
the concepts of standard communication in robotics using
the Robot Operating System (ROS) [17] and lightweight

Linux containers for consistent software development and
deployment using Docker [18]. For more details about the
BEV MOT architecture and mathematical expressions, we
refer the reader to our previous work [3].

The core interest of this paper is the incorporation of
HD map semantic and geometric information, in addition
to the ego-vehicle status, to the system proposed in [3].
As observed in Fig. 2 and Fig. 1, once the most energy-
efficient route is calculated, the planning layer calculates
the most relevant lanes around the vehicle (also referred
as monitorized lanes) to filter the obstacles, for example,
not considering the VRUs that are inside the sidewalk far
away the road or the vehicles that are located in a lane
in which lane change is not allowed, as observed in Fig.
1. For this task, the OpenDrive standard was considered in
order to satisfy the requirements of this work. OpenDrive
represents a standard that allows to describe with the road
map with splines with a high precision, as well as any
other significant element described in the standard or even
customized by the user, presents a variety of information in
terms of metadata, quite useful to identify the roles of the
lanes (current, back, lane change is allowed, merging, split,
etc.) and an availability of the center of the lanes to facilitate
path planning calculation. In our architecture, we make use of
the C++ library libcarla that facilitate to work with this map
standard via a PythonAPI that wraps all the dependencies.
Using the concept of monitorized lanes help us to increase
the reliability and robustness of the system since it is tracking
all objects in the environment, which would escalate the
computational cost in an arbitrarily complex urban scenario.
Nevertheless, VRUs, like pedestrians or cyclists, are usually



difficult to predict, so we enlarge the monitorized area
a certain threshold t to the sidewalk so as to track the
closest VRUs to the road, as observed in Fig. 1. With this
approach we are able to estimate the velocity of the objects,
differentiating between dynamic and static obstacles once
the velocity estimation is compensated with the ego-vehicle
velocity, provided at the beginning of the workflow. For
all dynamic participants, we predict their future trajectory
based on their velocity in the short-term, with a minimum
period of 3 s. Then, with this hypothesis, if the VRU is
getting closer to the road, we estimate its global velocity,
then its future trajectory at least 3 seconds ahead, predicting
its position in the road using a CTRV (Constant Turn Rate
and Velocity) model. Moreover, based on the ego-vehicle
status, we also generate a trajectory prediction of our own
vehicle, being able to estimate a predicted collision between
the ego-vehicle and the traffic participants carrying out the
2D IoU between the corresponding trajectories. If this metric
is greater than a given threshold, the perception layer sends a
signal to the decision-making layer to suddenly stop the car.
Otherwise, if a traffic participants is inside the route but the
ego-vehicle forecasted trajectory does not collide with the
traffic participant, the velocity is adjusted in a similar way
to the well-studied Adaptive Cruise Control (ACC) [19].

Fig. 3. Car to Pedestrian Nearside Adult (CPNA) scenario

IV. EURO-NCAP BASED VALIDATION PROTOCOL

A considerable amount of research works and studies,
related to pedestrian detection and collision avoidance be-
havior are present in the literature, where the main ob-
jective is to validate the perception and control modules.
Nevertheless, as state before our goal to demonstrate how
incorporating HD map information helps the whole AD stack
to anticipate faster the behaviour of the traffic participants in
the corresponding traffic scenarios. Then, common metrics
for all frameworks must be used to evaluate the whole
architecture, where all modules are integrated. Regarding
this, New Car Assessment Programs (NCAPs) protocols are
introduced, evaluating the safety of vehicles for different
traffic situations and Advanced Driver Assistance Systems,
such as Child Occupant Protection (COP), Speed Assist
Systems (SAS) or Autonomous Emergency Braking (AEB).
Euro-NCAP [20] is introduced in 1997, representing the
widely most adopted performance assessment within the
scope of the collaboration of European Union countries.
China New Car Assessment Program (C-NCAP) [21] is
presented (2006) as a research and development benchmark

for vehicle manufacturers in Asia, being most of its proto-
cols based on Euro-NCAP. National Highway Transportation
Safety Administration (NHTSA), funded in 1970 as an
agency of the Department of Transportation of United States,
published [22] its guidance documents and regulations on ve-
hicles equipped with ADAS. As observed, these programmes
do not present specific protocols in order to evaluate AD
stacks, presenting noticeable differences, such as different
scenarios, parameters and evaluation metrics. Then, we adop
the validation method proposed by [23], which proposes to
generalize the VRU v.10.0.3 protocol [24], representing a
baseline to compare the performance of different pipelines
for the particular situation (both in simulation and real-world)
of an Unexpected Vulnerable Road User (VRU) jumping
into the road during the navigation, where an Autonomous
Emergency Braking (AEB) behaviour must be executed.
Fig. 3 illustrates this traffic situation, in which the VRU
(a pedestrian in this particular case) starts in the closest
sidewalk to the vehicle in a perpendicular position to the
vehicle orientation. Once the vehicle starts the navigation
and the L2 distance between the ego-vehicle centroid and
the VRU centroid is lower than a certain threshold d, the
VRU starts its path to unexpectedly cross the road in such a
way the ego-vehicle must detect, track and forecast its future
trajectory in order to avoid the collision or at least reduce
the impact velocity as much as possible. Then, the protocol
consists on reproducing the CPNA crash avoidance scenario,
with a fixed VRU velocity (vp) of 5 km/h and a variable ego-
vehicle velocity that ranges from 10 km/h to 60 km/h. It is
important to note that the threshold d is not fixed, but it is
ego-vehicle velocity dependent, that is, the pedestrian must
start walking in such a way the impact point (PI) (Fig. 3) is
in the center of the lane for each particular velocity.

Regarding the evaluation metrics, a score for each test is
calculated based on the velocity reduction of the vehicle, as
following:
• For a vehicle velocity vv less than or equal to 40km/h:

– If the vehicle stops without collision, the highest
score is achieved:

scoretest = scoremax (1)

– Otherwise, if the vehicle collides, its score is de-
fined as follows:

scoretest =
vtest − vimpact

vtest
· scoremax (2)

• For vv higher than 40km/h:
– If the vehicle is able to reduce its speed in at least

20 km/h, the highest score is achieve:

vimpact ≤ vtest −20→ scoretest = scoremax (3)

– Otherwise, if the vehicle collides at a velocity
greater than the velocity under test less a threshold
of 20 km/h, no score is achieve:

vimpact > vtest −20→ scoretest = 0 (4)



Finally, the final score of a particular pipeline is given by
the arithmetic mean of the results obtained in each CPNA
crash avoidance test for different weather conditions. For
further details about the validation protocol, we refer the
reader to [23].

V. EXPERIMENTAL RESULTS

In this section we obtain some interesting both qualitative
and quantitative results, evaluating our AD stack [19] in the
CPNA crash avoidance scenario using two different percep-
tion layer strategies. On the one hand, we implement the
perception module stated by [3] which tracks all objects in
the environment regardless their topological information and
considers a naive velocity dependent rectangular monitorized
area in front of the vehicle to determine the distance to the
nearest object in the route as well as to predict the collision.
On the other hand, we use SmartMOT to track and predict
the future trajectories of only the most relevant obstacles
around the vehicle, that is, those in which the human in
manual driver should pay attention throughout the route,
such as VRUs close to the road, vehicles in intersections
and lanes where the lane change maneuver is allowed, etc.
Qualitative results may be found in the following play list
SmartMOT 2, where the SmartMOT performance is illus-
trated. Regarding urban environment complexity, in order
to validate a whole AD architecture the system must be
tested in countless environments and scenarios, which would
escalate the cost and development time exponentially with
a physical approach. Considering this, the use of photo-
realistic simulation (virtual development and validation test-
ing) and an appropriate design of the driving scenarios are
the current keys to build safe and robust AV. In our work
we propose the use of CARLA (CAR Learning to Act) [5]
as the best open-source simulator to reach our goals, taking
even more importance when analyzing the behaviours the
vehicle can face in these complex traffic scenarios. One of
the best advantages of CARLA is the possibility to create
ad-hoc urban layouts, useful to validate the navigation ar-
chitecture in challenging driving scenarios. This code can be
downloaded from the ScenarioRunner repository, associated
to the CARLA GitHub. The ScenarioRunner is a module
that allows the user to define and execute traffic scenarios
for the CARLA simulator. In the present case, we define
several scenarios according to the CPNA crash avoidance
traffic situation, modifying the velocity of the ego-vehicle
and the presence of other traffic participants. All test were
carried out in a PC desktop (Intel Core i7-9700k, 32GB
RAM with CUDA-based NVIDIA GeForce RTX 2080 Ti
11GB VRAM), using the version 0.9.10.1 version of CARLA
as well as the corresponding ROS Bridge, responsible of
communicating the CARLA environment with our ROS-
based architecture, and ScenarioRunner modules. In partic-
ular, we make use of the OpenScenario standard, supported
by ScenarioRunner, where both the VRU and ego-vehicle
features can be modified to accomplish the Euro-NCAP

2SmartMOT: https://cutt.ly/uk9ziaq

TABLE I
COMPARISON OF OUR TWO DIFFERENT PERCEPTION STRATEGIES IN THE

CAR TO PEDESTRIAN NEARSIDE ADULT (CPNA) SCENARIO. WE BOLD

THE BEST SCORE IN BLACK

CPNA

vtest scoremax
Rectangular area + [3] SmartMOT

vimpact score vimpact score
10 km/h 1.00 0.0 km/h 1.00 0.0 km/h 1.00
20 km/h 1.00 0.0 km/h 1.00 0.0 km/h 1.00
30 km/h 2.00 0.0 km/h 2.00 0.0 km/h 2.00
40 km/h 3.00 0.0 km/h 3.00 0.0 km/h 3.00
50 km/h 2.00 23.82 km/h 2.00 0.0 km/h 2.00
60 km/h 1.00 44.23 km/h 0.00 0.0 km/h 1.00

Total 10.00 9.00 10.0

requirements. Due to size constraint of this paper, we do
not validate the performance of our architecture for different
weather conditions but only in daytime conditions. In order
to appreciate the behaviour of the vehicle during navigation,
we incorporate a very illustrative temporal diagram (Fig. 4),
representing a powerful manner to qualitatively validate how
the architecture behaves in an end-to-end manner, since we
can observe how the car behaves considering the different
actions and events [19] provided by the executive layer,
which is actually the output of the whole architecture before
sending commands to the motor. As observed, the ego-
vehicle starts far away from the adversary and starts its
navigation. At second 22 a pedestrian that is in the sidewalk
is detected, so tracking-by-detection and subsequent motion
prediction must be carried as fast as possible to avoid
collision, since the scenario is designed in such a way that the
pedestrian must start walking in such a way the impact point
(PI) (Fig. 3) is in the center of the lane for each particular
velocity. After that, our prediction module intersects the ego-
vehicle forecasted trajectory and the pedestrian forecasted
trajectory. If the Intersection over Union (IoU) is greater
than a threshold (in this case, 0.01), a predictedcollision
flag is activated and the low-level (reactive) control, which
always runs in the background of the decision-making layer,
performs an emergency break until the car is stopped in front
of the obstacle. Navigation is resumed once the obstacle
leaves the driving lane. Table I compares the performance
of the architecture by implementing [3] and a rectangular
monitorized lane to retrieve the nearest object in route
and predict collision against our proposal, where it can be
appreciated that for velocities greater than 40 km/h, using
HD map semantic and geometric information gives the car a
valuable reaction time to anticipate the VRU behaviour and
avoid the collision, achieving the highest score.

Fig 5 shows different analysis of the CPNA crash avoid-
ance scenario with variable ego-vehicle and the incorporation
of other traffic participants in the scenario (5(c) 5(d)). T0 cor-
responds with the moment the vehicle either stops or collides,
and crosses x represent the moment in which the system
sends a predicted collision signal to the executive layer, so it
is coherent that crosses in tests where the ego-vehicle collides
with the VRU are shifted to the right (prediction collision

https://cutt.ly/uk9ziaq


Fig. 4. Unexpected Vulnerable Road User (VRU) temporal diagram. At the top, the events produced by our monitors and map manager modules. In the
middle, the selector, and start (background) PNs of our decision-making layer. At the bottom, the velocity of the car throughout the navigation

signal was given in time). Left column tracks all objects
around the vehicle and adopts a geometric monitorized area
to estimate the nearest distance and predicted collision,
whilst right column uses HD map information to help in the
Multi-Object Tracking and motion prediction tasks, monitor-
izing only the most relevant traffic participants around the
vehicle that is, SmartMOT. Using HD map information is
able to avoid collision until a ego-vehicle velocity of 80
km/h, where SmartMOT is not able to send a signal of
predicted collision (output of the system, as shown in Fig. 2)
in time, colliding at a velocity of 39.78 km/h. Nevertheless,
this velocity at the moment of collision is even lower that
the impact velocity (44.23 km/h) when testing the system
under 60 km/h condition not using HD map in the MOT
stage, illustrating how incorporating additional semantic and
geometric map information helps the vehicle to react faster
or at least mitigate the effect of collision. Moreover, we
simulate both perception strategies using the most common
velocities in urban scenarios, which range from 30 to 50
km/h, including 5(c) 5(d) static adversaries (in particular,
vehicles and pedestrians) which do not actually in the traffic
scenario to fulfill the particular requirements stated by [23]
protocol. As expected, tracking all objects around the ego-
vehicle and using the rectangular monitorized area suffers
when the number of traffic participants is increased around
the ego-vehicle, whilst SmartMOT holds this exponential in-
crease by analyzing the objects and their corresponding role
as relevant obstacles considering the information provided
by the HD map, avoiding the collision in all situations.

VI. CONCLUSIONS AND FUTURE WORKS

This work proposes SmartMOT, a simple yet powerful
pipeline that fuses the concepts of tracking-by-detection and
information of HD maps, in particular using the OpenDrive
standard, to design a real-time and power-efficient Multi-
Object Tracking (MOT) pipeline used to track and predict the
future trajectories of only the most relevant obstacles around
the ego-vehicle, considering their role according to the
semantic information provided by the map. This end-to-end
pipeline is integrated with ROS for standard communications
in robotics and Docker to provide the system with flexibility
and isolation. Then, an end-to-end validation of our ROS-
based fully-autonomous driving architecture is carried out,
obtaining a specific score using the Car to Pedestrian Near-
side Adult (CPNA) scenario, testing our proposal against our
previous work in terms of tracking and motion prediction,
illustrating how the incorporation of HD map information
gives the vehicle a valuable time to anticipate the Vulnerable
Road User (VRU) behaviour or at least mitigate the collision.
We hope that our distributed pipeline can serve as a solid
baseline on which others can build on to advance the state-
of-the-art in fusing perception data and map information to
perform real-time motion prediction in arbitrarily complex
urban scenarios. As future works, we plan to incorporate
Deep Learning in the MOT and motion prediction stages
regarding the paradigm of Multi-Agent interaction, integrated
with an enhanced monitorized area and regulatory elements
around the vehicle, in order to validate our proposal in more
challenging situations to improve the reliability, effectiveness
and robustness of our system as a preliminary stage before
implementing it in our real autonomous electric car.



(a) (b)

(c) (d)

Fig. 5. Analysis of the Car to Pedestrian Nearside Adult (CPNA) crash avoidance scenario with variable ego-vehicle velocity. Left column (a,c) adopts
a rectangular monitorized area to estimate the nearest distance and predicted collision, Right column (b,d) uses HD map information for this purpose. On
the other hand, first row shows the scenario without additional traffic participants, second row analyzes the crash avoidance scenario including additional
traffic participants to the road, monitorized sidewalk area and non-relevant sidewalk area. Crosses in the lines represent the moment in which the system
sends a predicted collision signal to the executive layer
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Guillén, F. Arango, J. Araluce, and J. López, “Train here, drive
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