
An Infrastructure-based Localization Method for
Articulated Vehicles

Alberto Justo1,3 , Iker Pacho1,2 , Javier Araluce1 , Jesus Murgoitio1 , and
Luis Miguel Bergasa3

1 TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio,
Spain

2 Department of Automatic Control and Systems Engineering, University of the
Basque Country (UPV/EHU), 48013 Bilbao, Spain

3 Department of Electronics, University of Alcalá, 28805 Alcalá de Henares, Spain

TRUCK

      TRAILER

       CLUSTER             

Fig. 1: Infrastructure-based Localization Method for Articulated Vehicles: The left side
shows three different articulated vehicles evaluated in this research, while the right side
displays LiDAR point clouds with predicted 3D Boxes for the same scenario.

Abstract. Automating articulated vehicles in valet parking maneuvers
is becoming more significant, due to the growing need for efficient freight
transportation and logistics. Thus, this paper introduces a novel Infras-
tructure to Vehicle (I2V) localization approach for articulated vehicles.
The proposed method focuses on accurately classifying trucks and trail-
ers and hitch angle estimation between them. Validations with real-world
LiDAR data on different articulated vehicles show that our solution im-
proves safety and efficiency in automated docking scenarios without ve-
hicle modifications.
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1 Introduction

The use of articulated vehicles, defined as a lead unit attached to a trailer, is a
common practice in the transportation industry, particularly for the movement
of goods and materials. Road vehicles in the European Union constitute the 25
% of the whole freight transportation, near 4 million vehicles [11]. Moreover,
according to the Transport and Logistics Observatory (Observatorio de Trans-
porte y Logística OTLE) in Spain, there are over 1.5 million articulated vehicles
circulating each year [24]. In the context of Connected and Automated Vehicles
(CAVs), particularly in road freight transportation systems, articulated vehicles
present different challenges to be accomplished. Articulated vehicles are suited
for applications like automated docking, where space optimization and precise
control are crucial in urban environments and freight hubs [15]. The implementa-
tion of automated and connected technologies in load transport can lead to more
efficient logistics, reduced emissions, and lower operational costs. Currently, com-
panies like Aurora [2], Driveblocks [10] or Waabi [29] are integrating automated
trucking technologies into different driving scenarios.

Given these circumstances, articulated vehicles experience more unstable sit-
uations than one unit vehicles. It is essential to consider modes such as jack-
kniffing, trailer shaking or rollover, to ensure a safer control of the vehicle [19].
Due to different attachable trailers and the articulated system problem, there is a
need to identify each unit’s location and orientation. Also, a fundamental require-
ment is to ensure the hitch angle of the vehicle, defined as the angle between the
longitudinal axes of the trailer and the lead unit [15]. Current solutions use a va-
riety of different sensors [9,16,23] and model-based methods [13,14] to solve these
challenges. However, these approaches imply making significant modifications on
the vehicle, which can be costly and time-consuming in terms of sensor installa-
tion and maintenance. Infrastructure-based solutions offer a more cost-effective
and comprehensive alternative for controlled scenarios that work with different
vehicles without adapting the vehicle [3]. As a result, infrastructure-based solu-
tions enhance safety and efficiency, while avoiding the logistical challenges and
expenses typically associated with vehicle-based systems.

For this reason, we propose in this paper our Infrastructure-to-Vehicle (I2V)
localization solution for articulated vehicles, represented in Figure 3. To the
best of our knowledge, this approach has not been implemented before. The
main contributions of our paper are the following:

– We developed a novel LiDAR-based I2V localization approach for articulated
vehicles, using KD-Tree Euclidean Clustering [20] and Principal Component
Analysis (PCA) [22]. This system is integrated with Simple Online and Re-
altime Tracking (SORT) [5].

– We implemented a hitch angle estimation (HAE), based on truck and trailer
detection and tracking within geometric calculation.

– We validated our approach with three articulated vehicles in real-world sce-
narios, within different LiDAR setups.
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2 Related Works

2.1 Infrastructure-based Localization

Although 3D object detection has experienced rapid development, the use of
roadside sensors for 3D object detection and tracking remains a relatively new
area. This approach holds significant potential to overcome challenges such as
occlusions, perception failures from vehicle-based sensors, and limited detection
range [4]. The use of roadside sensors can lead to more accurate object detection,
precise localization, and improved overall situational awareness [1, 8].

In addition to these advantages, pointcloud map-based solutions, like Oc-
toMap [31] or Normal Distributions Transform (NDT [26]) are becoming increas-
ingly popular to aid filtering processes. They provide structured representations
of 3D space that can be used to easily rule out noise, static objects and outliers.
However, the dynamic nature of articulated vehicle environments means that
maps must be frequently updated to reflect changes. For example, the positions
of vehicles, containers, and equipment can change rapidly in logistics yards or
construction sites. This needs continuous map updates to maintain the accuracy
and reliability of the localization and detection systems. These updates can be
computationally demanding and require sophisticated algorithms to ensure that
the map remains consistent and accurate over time [6].

Currently, datasets such as [32, 34, 35] are among the only real-world in-
frastructure datasets available. Moreover, few current infrastructure-based 3D
object detection models can distinguish between truck and trailer in articulated
vehicles [33]. As of today, there is no available dataset focused on 3D detection
of different articulated vehicles.

2.2 Hitch Angle Estimation

Hitch Angle Estimation (HAE) is a critical component in the control and safety
systems of articulated vehicles [15]. It refers to the determination of the angle
between the towing vehicle and the trailer, as shown in Figure 2. HAE is es-
sential for various applications, including stability control, path planning and
maneuvering in constrained environments [15,16]. Accurate HAE helps prevent-
ing accidents and ensures smooth vehicle operation, particularly in challenging
scenarios like sharp turns or reversing. This is a critical point in automated
docking for freight hubs, where accurate maneuvers are necessary due to limited
space.

Vehicle-based hitch angle estimation methods utilize various sensors and
models, each with distinct advantages and limitations. In terms of sensors, most
common solutions [7, 27, 28] are based on GNSS-IMU sensors, widely used for
their simplicity and real-time capabilities, but can suffer from drifts and ex-
ternal localization errors. In locations like freight hubs, container ports, and
similar industrial environments, GNSS signals can be obstructed by large struc-
tures or metal containers, creating challenges for reliable localization. Here,
infrastructure-based systems provide alternative localization methods, enhance
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Fig. 2: Illustration of truck (β), trailer (α) and hitch (∆) angles [28]

safety, and improve operational efficiency. By strategically placing fixed sensors
in these environments, we can support logistics operations where traditional
vehicle-based systems may fail. This holistic approach improves system robust-
ness and leads to more advanced applications in autonomous driving and smart
infrastructure management.

Camera-based systems [9] offer direct visual observation of the hitch angle,
yet environmental factors and lighting variations can compromise their perfor-
mance. The combination of LiDAR and RADAR solutions [21, 23] provide ac-
curate measurements and are less affected by weather, but they are costly and
require multiple modifications on the vehicle. Furthermore, these systems are
more focused only on the HAE, but not on the localization of both parts of the
articulated vehicle. On the other hand, our system provides both alternate so-
lutions without need of vehicle modifications nor increasing its cost. Moreover,
it gives the possibility to work with different vehicles. From models perspec-
tive, kinematic and dynamic systems are normally used. Kinematic models [16]
estimate hitch angles based on the geometric properties of the vehicle. They
are computationally efficient but may not fully capture the effects of dynamic
factors, like tire slip or road surface variations. On the other hand, dynamic
models [21] offer a comprehensive understanding by incorporating forces and
moments. However, they demand significant computational resources and de-
tailed vehicle parameter data. Infrastructure-based methods are not currently
able to calculate vehicle dynamics, but there is still gap for collaborative solu-
tions to be done. However, in situations like low-speed maneuvers at a proper
frame rate, I2V solutions can compensate this shortcoming in some way. I2V
systems may enhance these methods by providing additional perspectives and
data. This external data can improve the accuracy and reliability of hitch angle
estimation, offering redundancy and helping to overcome challenges like sensor
drift or occlusions.



An Infrastructure-based Localization Method for Articulated Vehicles 5

3 Methodology

In this paper, we present our infrastructure, LiDAR-based framework for local-
ization of articulated vehicles, shown in Figure 3. Our method involves sensor
calibration, point cloud preprocessing, vehicle detection, classification, tracking
and hitch angle estimation.

PREPROCESSING

POINTCLOUD CONCATENATOR ROI DEFINITION

C

SENSOR PLACEMENT AND
CALIBRATION

C

EUCLIDEAN CLUSTERING

C

TRUCK AND TRAILER CLASSIFICATION

C

TRACKING 

TRAILER id 2
X Pose: 10.06
Y Pose: 25.675
Angle: 33.01 

TRUCK id 1
X Pose: 12.61
Y Pose: 19.761

Angle: 4.66

C

HITCH ANGLE ESTIMATION

HAE
Angle: 28.45

DATA ACQUISITION AND CONDITIONING

SYSTEM APPROACH

AN I2V LOCALIZATION METHOD FOR ARTICULATED VEHICLES

Fig. 3: I2V Localization Method for Articulated Vehicles in docking manouvers.

This pipeline can be modified for different types of articulated vehicles. All
our framework modules support real-time parameter updates, allowing dynamic
adjustments without restarting. This feature is facilitated through a parameter
callback mechanism for each module. It updates internal state variables whenever
any parameter is changed.

3.1 Sensor Calibration

We transform the point clouds from different sensors to a common coordinate
frame, ensuring all data points are represented in the same spatial context. This
involves applying rotation and translation operations. Later on, we use the It-
erative Closest Point (ICP [30]) algorithm for accurate alignment. It minimizes
the distance between point clouds by iteratively refining the transformation pa-
rameters (rotation and translation). The key steps include:

– Initial Guess. We apply an initial transformation to the source point cloud,
done previously by measuring distances and rotations between LiDAR frames.
Moreover, we fine-tune those measurements through our parameter callback
mechanism.

– Closest Point Search. We find the closest point in the target cloud for
each point in the source cloud.

– Transformation Estimation. We estimate the transformation that mini-
mizes the distance between the matched points.

– Transformation Update. We update the transformation parameters and
repeat the process until convergence.
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3.2 Preprocessing

We differ two components in the preprocessing part: a pointcloud concatenator
and a region definition module. Both are illustrated in Figure 3.

Pointcloud Concatenator. The pointcloud concatenator implements voxel
grid definition, centroid aggregation, timestamp synchronization, and final con-
catenation to create a unified point cloud. This module is based on the pointcloud
preprocessor from Autoware Universe [17], which uses the following steps:

– Voxel Grid Definition: Given a point cloud P = {pi = (xi, yi, zi)}, the
space is divided into a grid of 3D voxels with dimensions (∆x,∆y,∆z). Each
point pi is assigned to a voxel Vijk like in Equation 1.

i =

⌊
xi − xmin

∆x

⌋
, j =

⌊
yi − ymin

∆y

⌋
, k =

⌊
zi − zmin

∆z

⌋
(1)

– Aggregation: For each voxel Vijk, the points pi are aggregated by comput-
ing the centroid. This is shown in Equation 2.

Cijk =

 1

N

∑
p∈Vijk

xp,
1

N

∑
p∈Vijk

yp,
1

N

∑
p∈Vijk

zp

 (2)

N is the number of points in voxel Vijk. Each calculated centroid is then
registered for later synchronization and concatenation.

– Synchronization. We align point cloud data packets based on their times-
tamps to ensure that data from different sources or time frames correspond
to the same moment in time. In cases where exact timestamp matches are
not available, interpolation is used to estimate intermediate data points, as
shown in Equation 3.

pint = pi +
(t− ti)

(ti+1 − ti)
(pi+1 − pi) (3)

For points pi and pi+1 with timestamps ti and ti+1, an interpolated point pint
at time t is calculated. In cases where point cloud data cannot be sufficiently
synchronized, such as when timestamps fall outside a predefined tolerance
window, the data is discarded. This prevents inconsistencies in the merged
point cloud and ensures accurate environmental representation.

– Concatenation. We combine the synchronized and aligned point clouds
into a single unified point cloud. Since there is a common reference frame
already for all point clouds, it makes the concatenation easier.

Region Definition Module. This module acquires the merged point cloud
data with two clear goals: define a region of interest (ROI) and identify and re-
move ground points. For that purpose, we implement passthrough and RANSAC
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[12] filters. Passthrough filter acts as a spatial filter, allowing us to specify the
bounds of the region we are interested in by setting minimum and maximum
values for each dimension (x, y, z). RANSAC helps us to fit models to data with
a high degree of outliers, in this case, ground points. Since our test field has very
little slope, it significantly enhances the performance of the RANSAC algorithm.
By applying these filters after concatenation, we avoid inconsistencies that could
happen from processing separate pointclouds independently.

3.3 Euclidean Clustering Detection

This module, based on euclidean distance, is suitable to find cubic volumes.
Given a concatenated point cloud P = {p1,p2, . . . ,pn}, we employ a KD-Tree
algorithm to organize the points for rapid spatial queries. We segment the point-
cloud into clusters based on a predefined distance tolerance ϵ, as shown in Equa-
tion 4. Here, Pi is the cluster of points that achieve the euclidean distance
condition under tolerance ϵ.

Pi = {pj ∈ P | dist(pj ,pk) < ϵ} (4)

Moreover, we make an assumption: articulated vehicle dimensions are prede-
fined. During the extraction process, each candidate cluster is evaluated against
the predefined dimensional constraint. It allows rapid modifications, as the ar-
ticulated vehicle dimensional parameters can be modified in real-time as needed.
This dimensional constraint includes a tolerance, referred to as volume tolerance
δV .

To implement the volume tolerance, we compute the volume of each detected
cluster and compare it against the assumed volume Ve with the tolerance margin.
A cluster is considered valid if its volume Vi satisfies Equation 5.

Vmin ≤ Vi ≤ Vmax (5)

Vmax = Ve + δV is the maximum acceptable volume, Vmin = Ve − δV is the
minimum acceptable volume. This ensures that only clusters with a realistic vol-
ume, accounting for both upper and lower bounds, are retained as an articulated
vehicle candidate.

3.4 Truck and Trailer Classification

Once the whole articulated vehicle is detected, we make a second Euclidean
Clustering detection for the trailer side, in a similar way to the aforementioned
in Equations 4 and 5. Then, in order to detect the truck, we subtract vehicle
and trailer pointclouds. We chose to apply this approach since trailer detection is
more feasible due to bigger number of contained points. The distinction between
trailer and truck can be achieved in a more intuitive way with this approach,
as volume differences between both parts are notable. For each cluster Pi, its
centroid C is computed as shown in Equation 6:
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C =
1

n

n∑
i=1

pi (6)

Since centroid calculation may be biased in situations where not all planes of
the whole vehicle are detected, we apply a correction in both x and y positions.
It is determined by the distance between the centroid, the closest plane in x and
y separately and the known dimensions of the vehicle.

Cadjusted = C+

(
Dx − dx

2
,
Dy − dy

2
, 0

)
(7)

Here, Dx and Dy are the known dimensions of the vehicle in the x and y
directions, respectively, and dx and dy are the distances from the centroid to
the closest planes in the x and y directions, respectively. Thus, we can deter-
mine truck and trailer position with more accuracy, regardless of the amount of
occluded planes.

3.5 Tracking

In order to identify and smooth our articulated vehicle detections, we use SORT
(Simple Online and Realtime Tracking [5]) algorithm. It is designed for real-
time applications, particularly in the context of multi-object tracking (MOT).
SORT associates detections across consecutive frames using a combination of
well-established techniques, such as the Kalman Filter and the Hungarian algo-
rithm [18]. We use the Hungarian algorithm to solve the assignment problem by
computing a cost matrix based on Euclidean distance between current detections
and past trackers. Associations are determined using a 1 meter threshold to es-
timate truck and trailer IDs. The Kalman Filter in SORT is used to estimate
the state of tracked objects, incorporating both prediction and measurement
updates. The state prediction is given by Equation 8.

xk|k−1 = Fxk−1|k−1 (8)
xk|k−1 is the predicted state vector at time k, F is the state transition matrix

and xk−1|k−1 is the previous state estimate. The correction step updates the state
estimate based on new measurements, shown in Equation 9.

xk|k = xk|k−1 +Kk(zk −Hxk|k−1) (9)
xk|k is the updated state estimate, Kk is the Kalman gain, zk is the mea-

surement vector, and H is the observation model matrix. The Kalman gain Kk

is computed as shown in Equation 10.

Kk = Pk|k−1H
⊤(HPk|k−1H

⊤ +R)−1 (10)
Pk|k−1 is the predicted covariance matrix, and R is the measurement noise

covariance matrix.
To sum up, SORT algorithm integration ensures robust tracking by effectively

managing detection-to-track associations and updating state estimates.
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3.6 Hitch Angle Estimation

Our pipeline for angle determination consists of Principal Component Analysis
(PCA) for initial estimation of each cluster, SORT for smoothing, and HAE for
the relative angle between the truck and trailer. After adjusting the centroid of
the detected cluster, we apply Principal Component Analysis (PCA) using a his-
tory of the previous centroid positions. This helps us estimate the main direction
in which the articulated vehicle is moving. To do this, we construct a matrix C,
where each row represents a historical centroid position ci = (xi, yi, zi). Next,
we calculate the covariance matrix Q of C as mentioned in Equation 11. c̄ is the
mean of the centroid positions, shown in Equation 12.

Q =
1

n− 1

n∑
i=1

(ci − c̄)(ci − c̄)⊤ (11)

c̄ =
1

n

n∑
i=1

ci (12)

PCA finds the eigenvectors and eigenvalues of Q, where the eigenvector corre-
sponding to the largest eigenvalue represents the principal direction of movement
of the vehicle. This principal direction is projected onto the horizontal plane to
find the yaw angle. To ensure stability in the orientation estimation, constraints
are applied to limit rapid changes in the direction. Specifically, we constrain the
change in orientation between consecutive frames to avoid unrealistic jumps. Af-
ter estimating the orientation using PCA, we use the SORT algorithm just to
smooth the yaw angle. This step reduces noise and fluctuations in the orientation
estimation. The hitch angle ∆ between the truck and trailer is determined by
the difference in their respective yaw angles, as shown in Equation 13.

∆ = β − α (13)

α represents the yaw angle of the truck, and β represents the yaw angle of
the trailer [28].

4 Evaluation

4.1 Experimental Setup

The experiments were conducted in the test field at Astondo Bidea in Derio,
Spain, shown in Figure 4. To achieve comprehensive coverage of the articulated
vehicles and minimize occlusions, four Ouster OS1-32 LiDAR sensors were placed
around the test field. The goal was to maximize the field of view and ensure
accurate data capture from multiple angles.

We evaluated our method using three different articulated vehicles, as de-
tailed in Table 1. Regarding the Renault Twizy, we modified its back structure
in order to attach multiple kinds of trailers. It provided us an initial articulated
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l1

l2

l3

l4

d23d14

d12

d34

Fig. 4: Our test field for a realistic setting of automated docking. Here, Ouster LiDARs
l1, l2, l3 and l4 are deployed with the following counterclockwise setup: d12 = 19.2m,
d23 = 40.5m, d34 = 19.2m, d14 =15m.

vehicle where to make our developments and tests. However, the main purpose
of our application is to be applied in bigger articulated vehicles. The other two
freight vehicles, Man TGX and Volvo FH, were rented for these experiments. We
hired professional drivers for multiple day recording and testing. During the first
5 minutes before testing, there was an initial manual calibration of the whole
pipeline for each vehicle. Then, we recorded multiple maneuvers through the
test field, typical in freight hub situations. The recorded frames were manually
labeled for a posterior offline evaluation with the calibrated system. For labeling,
we used LabelCloud [25]. Given the project requirements where this research has
been developed, our solution aims to be deployed in computational lightweight
devices. The computational backbone of our experiments features a i7-12850HX
with 32 GB of RAM.

Table 1: Dimensions of the different articulated vehicles used in the experiments.

Vehicle Type Component Height [m] Width [m] Length [m] Volume [m3]

Renault Twizy Truck 1.50 1.57 2.00 4.71
Trailer 2.50 1.75 2.50 10.94

Man TGX Truck 2.86 2.77 2.77 21.94
Trailer 2.55 2.77 13.68 96.63

Volvo FH Truck 2.50 2.50 2.55 15.94
Trailer 2.50 2.50 6.30 39.38
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4.2 Results

In this subsection we present our results based on the Root Mean Square Errors
(RMSE) for position/angle of each unit, and for HAE. Moreover, in relation
with these metrics, we analyze our method performance with different LiDAR
utilization in the same sensor placement, illustrated in Figure 4.

Position RMSE is obtained as shown in Equation 14. It represents the
differences between the detected positions (xi, yi) and the ground truth positions
(xgt

i , ygt
i ) through the number of data points N .

RMSEposition =

√√√√ 1

N

N∑
i=1

[
(xi − xgt

i )2 + (yi − ygt
i )2

]
(14)

Orientation RMSE is obtained using the differences between the detected
yaw angles θi and the ground truth yaw angles θgt

i , as in Equation 15.

RMSEorientation =

√√√√ 1

N

N∑
i=1

(θi − θgt
i )2 (15)

HAE RMSE is calculated in Equation 16. The HAE error at instance i is
defined as the difference between the truck angle αi and the trailer angle βi of
the detections against their ground truth values.

RMSEHAE =

√√√√ 1

N

N∑
i=1

(
(βi − αi)− (βgt

i − αgt
i )

)2
(16)

We evaluated the performance of our method within these metrics as shown
in Table 2, including the inference time of the entire framework: preprocessing +
euclidean clustering + truck and trailer classification + tracking + HAE. From
the obtained results, we can state that the Truck class shows higher overall
error due to lower density of scattered points. This is particularly pronounced
in the case of the Renault Twizy, due to its irregular shape compared to the
more ’box-like’ shapes of the other two vehicles. The Volvo FH presents the best
results, as the space between Truck and Trailer is more notable than in the Man
TGX, facilitating their classification. The aforementioned results can be seen
qualitatively in Figure 5. Here, we choose to represent only the vehicles holding
the higher number of frames (Man TGX and Volvo FH), since they are the main
target of our research.

In order to analyze how LiDAR usage affects our method, we obtained differ-
ent results as shown in Tables 3, 4 and 5. We can see through these tables that
LiDAR usage is particularly relevant to HAE. This measurement accumulates
the most significant error compared to the positions and orientations of both
Truck and Trailer classes, making it the most representative metric for evalua-
tion. The data shows a clear trend toward the use of multiple LiDAR sensors
to minimize errors. The inclusion of l4 generally provides the lowest error rates
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Table 2: Overall Metrics of our I2V Localization Method for Articulated Vehicles

Platform Frames RMSE (Pos [m]/Orient [deg]) RMSE Inference
Truck Trailer (HAE [deg]) time [ms]

Renault Twizy 518 0.19 / 1.68 0.16 / 1.65 1.96 36
Man TGX 906 0.15 / 1.57 0.13 / 1.46 1.82 45
Volvo FH 713 0.14 / 1.30 0.12 / 1.26 1.77 39

in the method, except in the case of the Volvo FH, where l3 proves more ac-
curate. When using a combination of two LiDARs, the l2-l4 pairing offers the
best performance, as their strategic placement effectively covers the articulated
vehicle’s operating field while minimizing occlusions. Adding a third LiDAR,
specifically the l2-l3-l4 combination, further lowers the RMSE. In all scenarios,
incorporating all four LiDARs holds the most accurate HAE. However, beyond a
certain point, the incremental benefits of additional LiDARs may vary, needing
a balanced consideration between complexity, accuracy and computational cost.

Table 3: LiDAR setup metrics for Renault Twizy. The ”-” implies that no LiDAR was
used, whereas the "✓" means a LiDAR was used.

LiDAR Setup RMSE (Pos [m]/Orient [deg]) RMSE Inference
l1 l2 l3 l4 Truck Trailer HAE [deg] time [ms]

✓ - - - 0.46 / 2.75 0.31 / 2.42 2.91 20
- ✓ - - 0.33 / 2.38 0.31 / 2.53 2.95 20
- - ✓ - 0.41 / 2.54 0.33 / 2.56 2.97 20
- - - ✓ 0.31 / 2.64 0.34 / 2.45 2.80 20
✓ ✓ - - 0.22 / 2.10 0.33 / 2.36 2.70 25
✓ - ✓ - 0.36 / 2.16 0.30 / 2.55 2.70 25
✓ - - ✓ 0.29 / 2.11 0.32 / 2.79 2.69 25
- ✓ ✓ - 0.30 / 2.54 0.21 / 2.11 2.80 25
- ✓ - ✓ 0.26 / 2.32 0.28 / 2.09 2.66 25
- - ✓ ✓ 0.26 / 2.35 0.27 / 2.27 2.84 25
✓ ✓ ✓ - 0.22 / 1.90 0.28 / 2.52 2.60 30
✓ ✓ - ✓ 0.19 / 2.14 0.18 / 2.10 2.54 30
✓ - ✓ ✓ 0.31 / 2.27 0.23 / 2.19 2.50 30
- ✓ ✓ ✓ 0.19 / 2.00 0.22 / 2.22 2.26 30
✓ ✓ ✓ ✓ 0.19 / 1.68 0.16 / 1.65 1.96 36

5 Conclusions and Future Works

This work has presented our novel I2V Localization method for articulated vehi-
cles. For this purpose, firstly we developed a LiDAR-based euclidean clustering
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Fig. 5: Qualitative results of different trajectory captures for the Volvo (left) and Man
(right) freight vehicles. Ground Truth boxes are represented in red. Trailer and Truck
detections are represented in yellow and green, respectively.

Table 4: LiDAR setup metrics for Man TGX

LiDAR Setup RMSE (Pos [m]/Orient [deg]) RMSE Inference
l1 l2 l3 l4 Truck Trailer (HAE [deg]) time [ms]

✓ - - - 0.37 / 2.82 0.44 / 2.35 2.92 24
- ✓ - - 0.47 / 2.55 0.34 / 2.72 2.89 24
- - ✓ - 0.28 / 2.51 0.47 / 2.50 2.88 24
- - - ✓ 0.30 / 2.62 0.48 / 2.50 2.87 24
✓ ✓ - - 0.31 / 2.05 0.26 / 2.30 2.73 30
✓ - ✓ - 0.19 / 2.12 0.31 / 2.45 2.80 30
✓ - - ✓ 0.25 / 2.09 0.34 / 2.70 2.71 30
- ✓ ✓ - 0.29 / 2.60 0.23 / 2.25 2.80 30
- ✓ - ✓ 0.35 / 2.24 0.24 / 2.13 2.68 30
- - ✓ ✓ 0.32 / 2.45 0.20 / 2.14 2.80 30
✓ ✓ ✓ - 0.27 / 2.05 0.27 / 2.64 2.57 37
✓ ✓ - ✓ 0.27 / 2.13 0.18 / 1.99 2.61 37
✓ - ✓ ✓ 0.28 / 2.22 0.20 / 2.17 2.54 37
- ✓ ✓ ✓ 0.21 / 2.12 0.13 / 2.26 2.20 37
✓ ✓ ✓ ✓ 0.15 / 1.57 0.13 / 1.46 1.82 45
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Table 5: LiDAR setup metrics for Volvo FH

LiDAR Setup RMSE (Pos [m]/Orient [deg]) RMSE Inference
l1 l2 l3 l4 Truck Trailer (HAE[deg]) time [ms]

✓ - - - 0.32 / 2.75 0.49 / 2.31 2.87 25
- ✓ - - 0.42 / 2.50 0.41 / 2.77 2.95 25
- - ✓ - 0.31 / 2.46 0.53 / 2.57 2.84 25
- - - ✓ 0.23 / 2.57 0.44 / 2.46 2.91 25
✓ ✓ - - 0.24 / 2.01 0.19 / 2.26 2.67 31
✓ - ✓ - 0.26 / 2.06 0.24 / 2.39 2.86 31
✓ - - ✓ 0.20 / 2.04 0.27 / 2.64 2.64 31
- ✓ ✓ - 0.36 / 2.53 0.28 / 2.18 2.74 31
- ✓ - ✓ 0.31 / 2.31 0.17 / 2.09 2.62 31
- - ✓ ✓ 0.27 / 2.39 0.16 / 2.19 2.75 31
✓ ✓ ✓ - 0.34 / 2.10 0.20 / 2.58 2.53 35
✓ ✓ - ✓ 0.34 / 2.20 0.25 / 2.01 2.56 35
✓ - ✓ ✓ 0.22 / 2.27 0.22 / 2.23 2.48 35
- ✓ ✓ ✓ 0.28 / 1.99 0.20 / 2.00 2.27 35
✓ ✓ ✓ ✓ 0.14 / 1.30 0.12 / 1.26 1.77 39

detection of freight vehicles. Then, we classified truck and trailer parts, track-
ing them through SORT algorithm. For angle estimation of each unit, we used
PCA and SORT for further smoothing. Eventually, we estimated the hitch angle
between both units, which is the most important focus of our research. This
statement is proven by our evaluations obtained from real-world scenarios. Our
approach proves to be precise and efficient, even without embedding additional
sensors into the vehicle, making it a practical and lightweight solution. Moreover,
it has been deployed in a real world logistic application. On the other hand, we
need to implement an onboard sensoring baseline where to evaluate our solution
even further. However, compared to onboard solutions mentioned in the state of
the art, ours still has some improvement, especially to lower HAE. The fusion of
different inputs, such as data from both the infrastructure and the ego-vehicle,
could be investigated to improve the overall localization and HAE performance.
Furthermore, we would like to integrate deep learning methods to refine the de-
tection and classification processes. Finally, communication systems impact on
the performance of the proposed method could provide valuable insights for its
application in more complex and dynamic environments.
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