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CAMPUS. 28805 Alcalá de Henares (Madrid), Spain.

E-Mail: pjimenez,jnuevo,bergasa@depeca.uah.es

Abstract

This paper presents a method for robustly tracking
and estimating the face pose of a person in both indoor
and outdoor environments. The method is invariant to
identity and that does not require previous training. A
face model is automatically initialized and constructed
on-line, when the face is frontal to the stereo camera
system. To build the model, a fixed point distribution is
superposed over the frontal face, and several appropri-
ate points close to those locations are chosen for track-
ing. Using the stereo correspondence of the two cam-
eras, the 3D coordinates of these points are extracted,
and the 3D model is created. RANSAC and POSIT
are used for tracking and 3D pose calculation at each
frame. The approach runs in real time, and has been
tested on sequences recorded in the laboratory and in a
moving car.

1. Introduction

Face detection and tracking is a very active research
field in computer vision, and a comprehensive number
of methods have been developed [1]. Face detection
is also the first step in many other algorithms in face
recognition, modeling, expression analysis and other
areas of computer vision. Face pose estimation has
attracted interest for its usefulness in different appli-
cations. It is an important cue of where the person is
directing his or her attention, and thus has been widely
used in Human-Machine Interface applications, some-
times coupled with gaze estimation [2]. It is a principal
component of many driver inattention monitoring sys-
tems [3, 4, 5].

Many different approaches have been made to the
face pose estimation problem. In recent years, Active
Appearance Models [6] have been extended to enable

pose estimation, in 2D [7] and 2D+3D spaces[8]. Three
dimensional face models [9] include pose estimation as
a part of the fitting process. Appearance models pro-
cess the face as a flexible object, and have been shown
to work reliably in many different applications. Unfor-
tunately, their fitting algorithms are computationally
expensive, with a few exceptions such as [8], and some
of them exhibit fitting convergence problems when the
face and illumination change rapidly. They also re-
quire a time-consuming training process. Some of these
shortcomings have been solved in [10], where detection
of non-rigid surfaces is done based on keypoint recog-
nition. This algorithm works in real time, and the key-
point classifier can be trained within minutes [11].

Other methods simplify the processing by consider-
ing the face, or at least part of it, as a rigid object. Usu-
ally the eyes and nose are tracked in this algorithms.
In [12] a method for tracking the upper part of the face
is presented. The authors used the reflection of near-
infrared light on the user’s eyes (red-eye effect) as a
step of their algorithm. This technique has also been
used in [13] to estimate the pose of the face. These
works obtained accurate tracking and estimations in
real time in indoor tests. However, the red-eye effect
may not appear in an outdoor environment. Also, con-
tinuous exposure to near-IR lighting is a known cause
of eye fatigue.

Several approaches use generic machine learning to
evaluate the pose. In [14], a method using Support
Vector Machines (SVM) is presented. The method ac-
curately discriminated images of faces, but in those im-
ages the faces were only in three different poses. In [3],
Viola & Jones algorithm [15] is used to locate the face,
and a SIFT-like [16] descriptor is calculated over the
face area. A SVM trained in regression is used to es-
timate the pitch and yaw angles. This method yields
good results in tests in a moving vehicle, but it is com-
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putationally too expensive to run in real-time, and it
only provides estimates for two angles and not the full
3D pose.

Almost all the works mentioned above use monocu-
lar vision, and then estimate the pose using a model or
a pre-learned mapping from the computed characteris-
tics to the 3D pose.

In this paper we propose a stereo system that is able
to work with different users without prior training. The
only requirement is for the user to be in frontal position
to the camera system for a few frames during initial-
ization. This approach resembles [13] in the automatic
model initialization step, but our system does not re-
quire the use of near-IR to locate the eyes, and relies
on various facial features to robustly track the person’s
face, even when the eyes are occluded. The presented
algorithm uses stereo vision to construct a 3D model
of the face. Adequate features for tracking on the per-
son’s face are found using the Harris detector [17]. Us-
ing the stereo correspondence of the two cameras, the
3D coordinates of these points are extracted, and the
model is created. A modified Simultaneous Modeling
and Tracking algorithm (SMAT) [18] is used to track
the facial features on the video sequences from the cam-
eras independently, and RANSAC [19] and POSIT [20]
are used for a robust 3D pose calculation at each frame.
While the 3D model is rigid, it contains enough points
so that possible errors introduced by face deformations
can be handled by the algorithm.

The rest of the paper is structured as follows: in sec-
tion 2, we describe our approach to face model build-
ing and pose estimation in detail. Test results can be
found in section 3. Conclusions and future works are
presented in section 4.

2. Face model and pose estimation

In order to obtain the user’s face direction, it is first
necessary to construct a 3D model of the face. This
model is formed by a set of 3D points of the face.
The 2D projections of these points on each camera are
tracked on each frame, using the Simultaneous Model-
ling and Tracking (SMAT) [18] algorithm. From the 2D
points, the 3D face pose is obtained, using the POSIT
algorithm for pose extraction and RANSAC for erro-
neous point elimination. After a set of correctly tracked
points (inliers) is obtained, the position of the outlier
points is set accordingly to the estimated pose. A dia-
gram of this process is shown in figure 1.

2.1. 3D Face model creation

To define the model of the face, we use a coordinate
system affixed to the right camera. The model points
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Figure 1. System block diagram

are referenced to another coordinate system, with ori-
gin on the central point of the model. �X axis is the
horizontal axis, and grows to the right of the image. �Y
axis is the vertical, and grows down the frame, and the
�Z axis is perpendicular to the image plane and grows
to the rear of the scene so that the nose of the driver
should have the most negative z value.

The face pose is characterized by a translation
within the camera coordinate system, and a pointing
vector. This vector is defined as the normal vector to
the face, and at the moment of the model creation is
set to �vini = (x, y, z) = (0, 0,−1), as can be seen in
figure 2. The translation vector points to the center of
the model.

The first step to create the model is to localize the
user’s face. Viola & Jones [15] [21] algorithm is used in
both cameras to localize the position of a frontal face
within the camera frames. This algorithm returns a
box that encloses the face on each frame. We reduce
the size of this box by 33%, so that it only encloses the
face with bigger certainty, as shown in figure 3.

The algorithm initialization requires the person to
front at the cameras for a few frames at the beginning
of system operation. At this moment, the model is
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Figure 2. Face Model, coordinate system and initial model
vector

considered to have a pointing vector �vini = (x, y, z) =
(0, 0,−1). If the user is not correctly positioned, the
difference between the real pose vector at the initial-
ization step and �vini will appear as a constant offset
error.

(a) Left image (b) Right image

Figure 3. Model Construction

The face model is defined by thirty points that are
tracked over successive frames. To choose appropriate
points, a predefined standard face pattern is scaled and
placed over the detected inner box containing the face
on the left camera image. These points may not cor-
respond to any good feature on the user’s face to be
used for tracking, so a characteristic feature close to
each pattern point is chosen for tracking, as shown in
figure 3. The Harris algorithm [17] is used to locate
points with good contrast and tracking characteristics.
Stereo correspondence of these points over the other
camera are used to calculate its 3D coordinates. The
stereo camera system was calibrated using the Camera
Calibration Toolbox for MATLAB.

The model is built with the 3D coordinates of the
thirty feature points. The model origin is then moved
to the closest point to the center of mass of the model,
so that the initial 3D coordinates of the points are in-
dependent of the initial face position and distance to
the camera, and the initial pose vector is set to �vini.

2.2. Model self-occlusion

The face model is subject to self-occlusion when the
head turns over a certain angle, and some of the model
points may not be visible, or appear too distorted to
be correctly tracked. To detect such points, a hidden-
point pattern is created after the model initialization.
Each point is associated a limit rotation angle within
the point is visible. When the face rotation angle is
over the limit angle of a point, it is considered to be
hidden and the point is not processed for tracking and
pose estimation.

To create the hidden-point pattern, a circle is ad-
justed to the (x, z) coordinates of each model point, as
shown in figure 4. The circle is adjusted to minimize
the function

wk =
∑

(
√

(xo − xi)2 + (zo − zi)2 − R
2
), i = 1..30

(1)
where (xi, zi) are the x and z coordinates of each model
point, and (xo, zo) and R are the center in the (x, z)
plane and the radius of the circle.

Each point of the model is hidden when its angle
with respect to vini excesses ±60 degrees.
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Figure 4. Circle fit to the face to get the limit angles

2.3. Tracking using SMAT

The Simultaneous Modeling and Tracking (SMAT)
[18] is a recently developed technique for tracking ob-
jects in sequences. It is closely related to other tech-
niques such as [22], but it does not require any previ-
ous training. We briefly outline its main characteristics
here, and some modifications we have included over the
original work proposed by Dowson et al .

SMAT works by building a library of exemplars ob-
tained from previous frames in the sequence. The ex-
emplars in the library, image patches in our case, are
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clustered based on their relative distance, and the me-
dians of the clusters are used for fitting the model to
the next frame. A new exemplar is included in one of
the clusters depending on the distance to its medians,
or a new cluster is created if the new exemplar is too
far away from the existing ones. As a group of simi-
lar exemplars, each of these clusters will approximately
represent different appearances of the same feature of
the object. The resulting mixture model is fitted to
the next frame. Two tracking examples with a simple
4 patch model are shown in figure 5.

(a) Left image (b) Right image

Figure 5. SMAT based tracking

In the original paper, Dowson et al . [18] included a
model of structure for the distribution of the exemplars
on the images, that is also built on-line. However, our
implementation only builds an appearance model, and
the point distribution of the shape is constrained by
the 3D model. It has been shown [23] that location and
tracking errors are mainly due to appearance, and that
a generic shape model for faces is easier to construct.
Then, it is possible to reduce uncertainty and complex-
ity by only learning the appearance model. This model
also permits to use robust methods, and discard points
and exemplars that do not fit well, improving the over-
all robustness of the tracking. Further details are given
in the section below.

The formulation of the SMAT algorithm is indepen-
dent of the definition of distance and the minimization
method used. We have used Zero mean Normalized
Cross-Correlation (ZNCC) and Sum of Squared Differ-
ences (SSD) as distances, and Gauss-Newton and the
Nelder-Mead simplex method [24] for the minimization
process.

2.4. Pose estimation

After the position of the tracking points has been up-
dated for both the left and right frames independently,
the 3D face pose is to be estimated from the 2D pro-
jection of each point. However, the matching process
may not succeed for all points, and can result in errors
or drifting for some of them. These errors negatively
influence the accuracy of the estimated pose. Thus,

a robust optimization method is required to estimate
the best matching 3D face pose, that would detect as
outliers the points that have been incorrectly tracked,
so they can be safely discarded. We also consider that
points that have been correctly tracked may have some
random noise. The RANSAC algorithm is used to elim-
inate the outliers. 3D pose is obtained using DeMen-
thon’s four point iterative pose estimation algorithm
(POSIT) [20]. The POSIT algorithm calculates the
pose of a 3D rigid object from its projection on a sin-
gle image. It estimates the pose by first approximating
the perspective projection as an scaled orthographic
projection, and then iterating refining the estimation
until the distance between the projected points and
the ones obtained with the estimated pose falls below
a threshold.

The pose is given as a translation �T and a rotation
�R matrices, which indicate the position of the central
point of the model with respect to the camera coor-
dinate system, and its rotation from the initial model
given.

In each RANSAC iteration, seven points are ran-
domly selected from the model, and used to calculate
the pose (�R and �T matrix) using the POSIT algorithm.
With this �R and �T , all 3D original points of the model
are projected over the image plane, and the Euclidean
distance from the tracking point to the corresponding
projected point is calculated. If this distance is less
than a threshold, this point is considered to be correct,
and marked as an inlier. The RANSAC algorithm runs
for enough iterations to guarantee a 99% of success with
50% of outliers.

This process is performed over the left and right
frames independently, and the final pose estimation
is calculated from the pose estimations as a weighted
sum, according to the expressions:

�Rmodel =
�Rright · Il

Il + Ir
+

�Rr
left · Ir

Il + Ir
, if Ir, Il > Imin

(2)

�Tmodel =
�Tright · Il

Il + Ir
+

�T r
left · Ir

Il + Ir
, if Ir, Il > Imin (3)

where Il and Ir are the number of inliers from the
left and right pose estimations, as determined with
RANSAC. �Rmodel and �Tmodel are the resulting pose
estimation. �Rright and �Tright are the pose estimation
from the right image, and �Rr

left and �T r
left are pose es-

timation from the left camera, translated to the right
camera using the corresponding stereo equations and
camera calibration parameters. In case the number
of inliers of any of the cameras is less than the Imin

threshold, set to half the total number of points, that
estimation is discarded and the estimation of the other
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camera is used. If inliers for both images are below
the threshold, the frame is rejected and the estimation
from the previous frame is used.

2.5. Tracking Failure detection and Recovery

Points identified as outliers by the RANSAC algo-
rithm are moved to a corrected position, so they can be
tracked on the following frames. The new position of
the points is calculated by re-projecting the 3D model
on both camera planes with the final estimated pose,
�Rmodel and �Tmodel.

The SMAT model is also inspected when outliers
are found, as it has been updated with all the image
patches, regardless of their validity. Incorrect patches
could contaminate the model and induce further track-
ing errors. Thus, patches that correspond to outlier
points on the last frame are also considered outliers,
and removed from the SMAT model.

3. Test results

The algorithm has been tested with videos recorded
in the laboratory and in a moving car during daytime.
The videos start with the user facing front to the cam-
eras. The sequences recorded in the car show normal
driving gestures and head movements. The videos were
recorded using two synchronized FireWire cameras, at
a framerate of 20 fps and a resolution of 800 x 800 pix-
els. The total length of the sequences is over an hour.

For each video, the model construction process is
carried out over the first frame. The system chooses
up to 30 characteristic tracking points to built the
model. After the corrections are done and erroneous
points are automatically eliminated, the model is cor-
rectly created, as the point occlusion pattern, based on
a cylinder-like face.

After the model is created, the tracking and pose es-
timation process starts. As shown in figure 6, the pose
is correctly estimated over face rotations. The more the
face is rotated, the more points are hidden, and thus the
accuracy of the pose estimation falls. This reduced ac-
curacy appears for angles that result in more than 50%
of the points being hidden (over 30 degrees). When
approximately 75% of the model’s points are hidden,
the RANSAC algorithm does not have enough points
to get the correct set of inliers and outliers, and thus
the pose estimation fails. This situation is displayed
in the last two frames on figure 7. The images cover
different head rotations, and show the estimated pose
vector.

To compare the results with the real face rotation
angle, four points have been manually placed on the
both images for each frame. From these points and us-

ing the stereo equations, the real face pose can be ob-
tained with good precision. This value has been used to
test the accuracy of the proposed algorithm, as shown
in figure 6. Table 1 shows the estimation error. The
high value of the error for the yaw angle is caused by
the fast increasing error when the angle is over 30◦, as
mentioned above.

Angle MAS error (◦) Std error (◦)
Pitch 4.92 5.50
Yaw 8.14 7.98
Roll 2.66 2.94

Table 1. Pose Estimation Mean Absolute Error

The algorithm has been coded in C/C++, and it is
able to run in real-time in a 2.4GHz Core2 Duo proces-
sor. Tracking with SMAT is the most time consuming
process. Although its processing time varies slightly
depending on the number of iterations required, it was
below the real-time threshold in all our tests. Table
2 shows the mean and maximum processing times for
tracking and pose estimation, for the given system with
30 points.

Task Mean time Max time
SMAT 18 ms 21 ms

RANSAC+POSIT 13 ms 15 ms

Table 2. Processing times

4. Conclusions

This papers presents a face tracking and pose esti-
mation algorithm using stereo vision that runs in real-
time. The algorithm is able to automatically construct
a 3D model of the face, just requiring the driver to look
straight ahead for a few seconds. Tracking of feature
points is carried out independently on left and right
images using SMAT, and incorrectly tracked points are
rejected using RANSAC. 3D pose is recovered from the
set of points using POSIT.

The algorithm has been tested in video sequences
recorded in the laboratory and in a moving vehicle,
and works reliably for face rotations under 40◦ degrees.
Rotations greater than this value result in a great num-
ber of points being occluded, and the pose can not be
estimated. To solve this problem, we are working on
on-line extended model creation. This would augment
the model when the face is rotated left or right, and the
global algorithm accuracy drops below a threshold due
point occlusion. The same method used to create the
initial frontal model will be used to extend the model
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(a) Frame 25 (b) Frame 110 (c) Frame 225 (d) Frame 310
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Figure 6. Tracking and Pose estimation of the face of a driver A under day light driving conditions.

(a) Frame 10 (b) Frame 80 (c) Frame 130 (d) Frame 225
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Figure 7. Tracking and Pose estimation of the face of a driver B under day light driving conditions.

along the sides of the face, taking care that no possible
features in the user’s hair are chosen. This augmented
model would include all the initial model points and
the newly added. A Kalman filter would also improve
system stability especially when the face rotation angle

is close to its limits. With these additions, this algo-
rithm is to be used as the base of a distraction detection
system for drivers.
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