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CHAPTER 12 

VISUAL ODOMETRY CORRECTION BASED ON 
LOOP CLOSURE DETECTION 

L. CARAMAZANA, R. ARROYO and L. M. BERGASA 

Robesafe Research Group, Department of Electronics, University of Al-
calá (UAH), lidia.caramazana.zarzosa@gmail.com 

An essential requirement in the fields of robotics and intelligent transporta-
tion systems is to know the position of a mobile robot along the time, as 
well as the trajectory that it describes by using on-board sensors. In this 
paper, we propose a novel approach focused on using cameras as percep-
tion sensors for visual localization in unknown environments. Our system 
allows to perform a robust visual odometry, where correction algorithms 
based on loop closure detection are applied for correctly identifying the lo-
cation of a robot in long-term situations. In order to satisfy the previous 
conditions, we carry out a methodological improvement of some standar 
computer vision techniques. In addition, new algorithms are implemented 
with the aim of compensating the drift produced in the visual odometry 
calculation along the traversed path. According to this, our main goal is to 
obtain an accurate estimation of the position, orientation and trajectory fol-
lowed by an autonomous vehicle. Sequences of images acquired by an on-
board stereo camera system are analyzed without any previous knowledge 
about the real environment. Several results obtained from these sequences 
are presented to demonstrate the benefits of our proposal. 

1 Introduction 

In recent years, the estimation of an autonomous robot or vehicle pose us-
ing computer vision techniques has become a topic of great interest in the 
robotics community. This is due to the improvements in cameras features 
and to their reduced costs with respect to other sensors traditionally used 
for localization tasks, such as GPS, IMU, range-based or ultrasounds, 
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among others. Besides, the proliferation of visual SLAM systems (Bailey 
et al., 2006) has extended the application of camera-based approaches for 
determining the global location of a mobile robot in an unknown environ-
ment. 

In this context, visual odometry (Nister et al., 2004) has the goal of es-
timating the position and orientation of a robot or vehicle by analyzing an 
image sequence acquired by cameras without previous information about 
locations. Each pair of images is considered to match their keypoints and 
calculate the translation and rotation between two poses of the vehicle. Un-
fortunately, visual odometry typically accumulates a drift when long peri-
ods of time are taken into account. This problem makes that the localiza-
tion tasks could not be completely reliable in these cases. For this reason, 
in extended trajectories the information provided by standard visual odom-
etry algorithms gives errors in long-term conditions. 

According to the previous considerations, in this work we propose a 
novel approach based on loop closure detection using ABLE (Arroyo et 
al., 2014) for correcting the drift in visual odometry, which is initially pro-
cessed by means of the LIBVISO library (Kitt et al., 2010). With the aim 
of solving the problems related to the drift, our system recognizes revisited 
places and recalculates a corrected pose. We contribute a method that uses 
this information to estimate the deviation between the revisited pose and 
the previous one. In order to validate our proposal, image sequences from 
the publicly available KITTI dataset (Geiger et al., 2013) are employed. 

2 Method for visual odometry: the LIBVISO algorithm 

The visual odometry algorithm provided by LIBVISO allows to determine 
the six degrees of freedom (rotation and translation) in a visual localization 
system. In our work, stereo cameras are employed in image acquisition. 
Due to this, intrinsic and extrinsic camera parameters are needed to cor-
rectly perform the matching between the stereo images. In our case, the 
tests performed in the KITTI dataset are carried out using the specific 
camera parameters defined in (Geiger et al., 2013). The application of a 
stereo camera approach provides a higher robustness to our global system, 
because it avoids the scale ambiguities that are common when monocular 
cameras are used for visual odometry computation. 

The methodology behind our implementation derived from LIBVISO is 
mainly based on a trifocal geometry between the images. Initially, some 
keypoints are detected and their main features are extracted and matched 
for each two consecutive pair of images, as shown in the example present-
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ed in Fig. 1. Taking into account the obtained matches, the movement of 
the autonomous robot or vehicle is estimated by processing a trifocal ten-
sor that associates the keypoints between three frames of a same static sce-
ne. 

 

Fig. 1. A representation of the movement estimated over an example image using 
visual odometry, jointly with a diagram of the applied trifocal tensor.  

In addition, the implementation of LIBVISO detects outliers using 
RANSAC (Scaramuzza et al., 2009), which allows to reject the atypical 
values obtained by erroneous matches and to improve the odometry results 
with respect to schemes without this filtering technique. However, this is 
not sufficient to avoid the drift along the time, as will be evidenced in the 
section of results. For this reason, we contribute a more robust approach 
based on a refined correction of the poses using loop closure information. 

3 Method for loop closure detection: the ABLE algorithm 

Some previous studies recently carried out by our research group in the 
topic of visual loop closure detection (Arroyo et al., 2014) are now applied 
to correct the drift derived from the previous visual odometry computation 
stage. The developed method for identifying when a place is revisited is 
named ABLE (Able for Binary-appearance Loop-closure Evaluation). 

The main goal of this algorithm is to visually describe places in order to 
give similarity measurements between them for elucidating if a loop clo-
sure exists or not. Typically, ABLE computes global LDB binary features 
(Yang et al., 2012) for image description. In this case, disparity infor-
mation obtained from the stereo images is also added to the descriptor. 
Apart from this, a variant of the description method initially designed in 
ABLE is contributed in this paper, where the recently proposed AKAZE 
features (Alcantarilla et al., 2013) are tested as core of the global descrip-
tion approach instead of LDB. We implement it to evaluate the robustness 
and efficiency of AKAZE, which adds gradient information in a nonlinear 
space to obtain a description invariant to scale and rotation. 
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After describing the images, the binary features (𝐝𝐝) computed for each 

frame are matched to see if they are similar enough to consider a revisited 
place. In the case of binary descriptors such as LDB or AKAZE, the 
Hamming distance can be applied in matching, which provides a great ef-
ficiency, because it consists on a simple XOR operation (⊕) followed by a 
basic sum of bits, as formulated in Equation (1). The obtained similarity 
values are stored on a distance matrix (𝑀𝑀). These values are used to detect 
the loop closures when high similarity measurements are obtained. 

 

𝑀𝑀(𝑖𝑖, 𝑗𝑗) =  𝑀𝑀(𝑗𝑗, 𝑖𝑖) = bitsum(𝐝𝐝(𝑖𝑖) ⊕  𝐝𝐝(𝑗𝑗))                    (1) 

4 Our proposal for visual odometry correction 

The information about the loops identified in the previous system stage is 
now used to correct the visual odometry. Here, we contribute the formula-
tion of our method to perform these corrections. After a revisited place is 
detected in a specific frame, the drift of the pose currently estimated by the 
visual odometry algorithm is compensated by taking into account the pose 
obtained when the place was previously traversed. In this case, we consid-
er corrections for the plane xz, where the deviation (∆) between the current 
pose (𝑖𝑖) and the previous one (𝑗𝑗) is calculated as follows: 
 

∆𝑥𝑥(𝑖𝑖) = |𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑗𝑗)|                                    (2) 
 

∆𝑧𝑧(𝑖𝑖) = |𝑧𝑧(𝑖𝑖) − 𝑧𝑧(𝑗𝑗)|                                       (3) 
 

Then, the current poses are updated (𝑥𝑥(𝑖𝑖)′, 𝑧𝑧(𝑖𝑖)′) in the 𝑥𝑥 and 𝑧𝑧 axes us-
ing the previously estimated deviation: 
 

𝑥𝑥(𝑖𝑖)′ = 𝑥𝑥(𝑖𝑖) + ∆𝑥𝑥(𝑖𝑖)                                     (4) 
 

𝑧𝑧(𝑖𝑖)′ = 𝑧𝑧(𝑖𝑖) + ∆𝑧𝑧(𝑖𝑖)                                      (5) 
 

Besides, an average deviation (∆𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎, ∆𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎) is subsequently computed 
after detecting the first pose corresponding to a loop closure. This infor-
mation is employed to correct the poses in the rest of the trajectory, where 
𝑚𝑚 is the number of processed frames: 
 

∆𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ ∆𝑥𝑥(𝑖𝑖)𝑚𝑚
𝑖𝑖=1
𝑚𝑚

                                      (6) 
 

∆𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ ∆𝑧𝑧(𝑖𝑖)𝑚𝑚
𝑖𝑖=1
𝑚𝑚

                                       (7) 
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After calculating the average deviations in the loop zone, the poses in 
the remaining frames are updated according to the following equations: 
 

𝑥𝑥(𝑖𝑖)′ = 𝑥𝑥(𝑖𝑖) + ∆𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎                                     (8) 
 

𝑧𝑧(𝑖𝑖)′ = 𝑧𝑧(𝑖𝑖) + ∆𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎                                     (9) 
 

The application of the formulated corrections in poses improves the ac-
curacy initially obtained by only using a visual odometry without consider 
the progressive drift, as corroborated in the next section of results. 

5 Evaluation and main results 

Our proposal is evaluated in the KITTI Odometry dataset (Geiger et al., 
2013). It contains 22 sequences recorded on different car routes around 
Karlsruhe (Germany). GPS ground-truth measurements are available. A 
ground-truth for loop closure was also defined in (Arroyo et al., 2014). 

In Fig. 2, it can be seen how the visual odometry measurements ob-
tained by LIBVISO without correction have a considerable drift with re-
spect to the GPS ground-truth. The maps presented correspond to some 
significant sequences from the KITTI dataset, which are also presented in 
Fig. 3 to show the matches of the loop closures detected using ABLE. 

In addition, Fig. 4 depicts some examples of distance matrices processed 
by means of ABLE using LDB and AKAZE descriptors as core. The de-
tected loop closures correspond to the diagonals in the matrices. Besides, 
Fig. 5 introduces precision-recall results about ABLE performance in loop 
closure detection depending on the descriptor used as core. Apart from 
LDB and AKAZE, we also test other typical descriptors such as HOG (Da-
lal et al., 2005), SURF (Bay et al., 2008), BRIEF (Calonder et al., 2010) 
and ORB (Rublee et al., 2011). These results demonstrate the better per-
formance of LDB and the new approach based on AKAZE. 

 

         
                   (a) Sequence 00                              (b) Sequence 02                               (c) Sequence 08 
 

Fig. 2. Results for visual odometry without correction in the KITTI dataset. 
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                   (a) Sequence 00                               (b) Sequence 02                             (c) Sequence 08 
 

Fig. 3. Results for loop closure detection in the KITTI dataset. 
 

Finally, Fig. 6 evidences the better accuracy of our proposal based on a 
visual odometry with loop closure corrections, where it can be seen how 
the drift is reduced with respect to the original visual odometry. 

 
 

         
               (a) 𝑀𝑀 ground-truth                            (b) 𝑀𝑀 using LDB                         (c) 𝑀𝑀 using AKAZE 
 

Fig. 4. Examples of distance matrices from the Sequence 06 of the KITTI dataset. 
 

 

 
 

Fig. 5. Precision-recall curves obtained for the Sequence 00 of the KITTI dataset. 
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(a) Sequence 05                                                         (b) Sequence 06         

Fig. 6. Results for visual odometry with loop correction in the KITTI dataset. 

6 Conclusions and future works 

In this work, we have defined and validated our system based on a robust 
visual odometry estimation using loop closure corrections. The results ex-
posed along the paper demonstrate the benefits of this proposal, such as the 
visible reduction of the progressive drift accumulated along the time.  

The contributions presented can be divided into three main areas. First 
of all, the implementation of the initial stereo visual odometry system 
based on LIBVISO. Secondly, the application of ABLE for loop closure 
detection, including a new approach based on AKAZE features. Finally, 
the formulation of a complete method for correcting the visual odometry 
estimations using the information about the loop closures detected. 

In future works, we plan to improve our visual odometry model using 
optimizations based on algorithms such as Levenberg-Marquardt. 
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