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Abstract— Semantic perception is a key enabler in robotics,
which supposes a very resourceful and efficient manner of
applying vision information for upper-level navigation and
manipulation tasks. Given the challenges on specular semantics
such as water hazards, transparent glasses and metallic sur-
faces, polarization imaging has been explored to complement
the RGB-based pixel-wise semantic segmentation because it
reflects surface characteristics and provides additional at-
tributes. However, polarimetric measurements generally entail
prohibitively expensive cameras and highly accurate calibra-
tions. Inspired by the representation power of Convolutional
Neural Networks (CNNs), we propose to predict polarization
information from monocular RGB images, precisely per-pixel
polarization difference. The core of our approach is a cluster of
efficient deep architectures building on factorized convolutions,
hierarchical dilations and pyramid representations, aimed to
produce both semantic and polarimetric estimations in real
time. Comprehensive experiments demonstrate the qualified
accuracy on a wearable exoskeleton humanoid robot.

I. INTRODUCTION

Semantic classification [1] is a fundamental topic in
robotic perception systems. The segmentation process, posed
as per-pixel prediction to divide observed scenes into seman-
tic regions, has become the key enabler to unify monocular
detectors for autonomously driving vehicle [2], assistive
wearable device [3], and humanoid robot [4] performing
locomotion, navigation or manipulation tasks. Notably, two
essential challenges that still need to be addressed are: 1)
to efficiently achieve accurate semantic segmentation in real
time, and 2) to effectively deal with critical semantic surfaces
in real world. An example could be the underlying water
hazards shown in Fig. 1, which are very dangerous for robots
but they tend to be classified as general road markings by
most of the current perception systems.

Polarization and its imaging extend the information dimen-
sion to be used for target detection [5], with the complemen-
tary characteristics coded implicitly in the polarization state
of light when reflected from different specular surfaces such
as water puddles [6], transparent glasses [7] and metallic
materials [8]. However, polarimetric measurements gener-
ally require expensive micro-polarizer cameras, multi-view
observations and precise calibrations. More specifically, a
micro-polarizer camera has been made by 4D Technology [9]
thanks to the development of polarization-sensitive focal
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Fig. 1. Three approaches of polarization perception: (a) Micro-grid array
for polarization camera [9], (b) Polarization difference imaging with a
polarized stereo camera [6], (c) Proposed approach for wearable robotics:
polarization prediction beyond semantics from RGB images (alternatively
together with depth images) using a convolutional neural network.

plane arrays. It costs more than 20000USD and depends on
the careful calibration process, which is crucial to its polari-
metric measurement performance [10]. While such micro-
polarizer camera has been applied for microscopes [11]
and interferometers [12] due to the capability to sense
under four polarization angles with a single shot (see Fig.
1(a)), it remains comparatively cost-prohibitive for robotics
community, thus only seen in limited work [7] [13].

As a workaround to this issue, the degree of linear
polarization in polarization difference imaging [14] has
been widely employed as a basis of polarization analysis
for perception and reconstruction of real-world specular
scenes [6] [7] [8]. However, polarization difference is cap-
tured through multi-view or time-division imaging, which
is tightly intertwined with the precise rotation of polarizers
attached on different cameras. These factors all limit the
flexibility and applicability, especially for wearable robotics.

Nowadays, Convolutional Neural Networks (CNNs) learn
and discriminate between different features directly from the
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input data using a deeper abstraction of representation layers.
Promisingly, recent advances in deep learning have achieved
break-through results in semantic segmentation [15], depth
estimation [16] and multi-focus image fusion [17]. Taking
inspiration from such representation power of CNNs, we
propose to predict polarization information from monocular
RGB images in an end-to-end, fully convolutional manner.
To the best of our knowledge, this is the first time dense
pixel-wise polarimetric measurements are inferred from light
intensity-based imagery. Our system can be used for military
and industrial purposes to enhance user mobility through
augmented/virtual reality interactions, e.g., highlighting the
critical hazards on the navigational path, or the whole path in
scenarios under poor illumination. In this way, exoskeleton
humanoid robots can also assist disabled people in their
rehabilitation training, or visually impaired users in everyday
self-navigation by using acoustic feedback.

The primary contribution of the paper is our polarization
prediction proposal. In addition, novel technical contributions
and results reside in the following aspects:

• A cluster of real-time architecture instances building
on factorized convolutions, hierarchical dilations and
pyramid representations, which can be used for se-
mantic/polarimetric prediction. PyTorch codes corre-
sponding to these architectures will be open-sourced at
github.com/elnino9ykl/ERF-PSPNet.

• A suit of real-world wearable assistive navigation sys-
tem (see Fig. 1(c)) including an exoskeleton robot and
a pair of smart glasses made available at krvision.cn.

• A comprehensive set of experiments on a large-
scale scene parsing dataset and an ego-centric cam-
pus dataset, which can be accessed at wangkai-
wei.org/downloadeg.html.

The remainder of this paper is structured as follows.
Section II reviews the literature mainly related to semantic
segmentation and polarization imaging for wearable robotics.
In Section III, the perception framework is elaborated. In
Section IV, the approach is evaluated and discussed as for
real-time/real-world performance of semantic/polarimetric
prediction. Section V draws the conclusions and gives an
outlook to future research.

II. RELATED WORK
Semantic classification has been fueled by the progres-

sively emerging deep learning pipelines and architectures.
Among the literature, a vital part of networks are predom-
inantly based on FCNs [15], which pioneered the era of
end-to-end segmentation. SegNet [18] revolutionized effi-
cient semantic segmentation by symmetrizing the encoder-
decoder design. ENet [19] implemented real-time semantic
segmentation by employing a larger encoder as good feature
extractors and the decoder is only responsible for fine-tuning
details. This simplified structure sacrifices a good deal of
accuracy in order to remain efficient. In our previous work,
ERFNet [2] pursued the aim of maximizing the trade-off be-
tween accuracy/efficiency in case CNN-based segmentation
needs to be applied on resource-constrained edge devices. In

a similar spirit, LinkNet [20] attempted to achieve accurate
instance-level prediction without compromising processing
time by linking the encoder and the corresponding decoder.
Recently, a very fast segmentation approach introduced
cognitive multi-scale hierarchical dilation, while exploiting
intermediate supervision to refine coarse features [21]. Al-
though these architectures claimed to have less performance
drop along with the impressing speedup, most of them are
designed for autonomous vehicles. In the state of the art, real-
time architectures tailored for assistive wearable robotics are
scarce, which is a time-critical, context-critical and safety-
critical domain. More importantly, RGB-based segmentation
degrades on specular surfaces, which are commonplace dur-
ing everyday navigation.

Polarization imaging is convincingly appealing to en-
hance semantic segmentation although human vision has not
evolved to exploit polarimetric information, such that the
complementarity has not been thoroughly confirmed. Along
with the advent of compact micro-polarizer cameras that
integrate micro-grid polarization filter arrays on the focal
plane to provide four orientations of linear polarization (see
Fig. 1(a)), stereo and polarization cues were incorporated
in a unified formulation [7]. Although related, it relies on
the synthetically generated data to model specular parts of
indoor scenes. In real-world setting, we previously presented
a pRGB-D framework with a polarized stereo camera to
unify the segmentation of traversable areas and water hazards
for the visually impaired [6]. Although the coverage of assis-
tance has been extended to vulnerable pedestrians, polarized
stereo cameras were also used in advanced driver assistance
systems [22] [23]. Within the intelligent vehicle context,
polarization information was utilized as features by lever-
aging classical methods, in order to tackle the problem of
outdoor scene segmentation on objects with strong reflection
or poor illumination [5]. While describing imperceptible light
properties, the policies in these multi-modality frameworks
remain largely handcrafted.

Wearable robotics is a research field with vast liter-
ature, but it is seldom bridged with data-driven semantic
perception. A team of researchers proposed the semantic
paintbrush [24], which is an augmented reality system based
on RGB-IR stereo setup and optical see-through headset,
along with a laser pointer allowing the user to draw directly
onto its 3D reconstruction. Unlike typical assistive systems, it
places the user in the loop to exhaustively segment semantics
of interest. In the domain of cycling, HindSight [25] uses
a deep neural network to locate and attribute semantic
information to objects surrounding a cyclist through a head-
worn panoramic camera. While inspiring, this work focused
on redirecting attentions to sonified objects by providing only
sparse bounding-box semantic predictions and hence cannot
be directly used for upper-level tasks. Similar bounding-
box interpretation was addressed when ultrasonic sensors
and computer vision joined forces [26]. Based on a wear-
able smartphone waist belt, it semantically interpreted the
detected obstructions based on their degree of danger, with
the aim to facilitate autonomous navigation of blind people
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(a) (b) (c) (d)

Fig. 2. The proposed architecture. From left to right: (a) Input, (b) Encoder, (c) Decoder, (d) Prediction.

in highly dynamic urban scenes, which is limited to only
four categories. In contrast, we target at dense and diverse
predictions, which suppose a very rich source of processed
information, including per-pixel polarimetric and semantic
estimations attaining coverage of various traffic elements.

III. APPROACH

A. System and architecture overview

In this research, the main motivation is to design a
prototype which should be wearable without hurting the self-
esteem of users with some disability. With this target in mind,
we follow the trend of using head-mounted glasses [27] to
acquire environmental information and interact with the user.
As worn by the user in Fig. 1(c), the pair of glasses is
comprised of a RGB-D sensor of RealSense R200 and a set
of bone conducting earphones. This pair of smart glasses
captures real-time RGB-D streams and transfers them to
the processor, while the RGB images (alternatively together
with depth images) are fed to the network for seman-
tic/polarimetric estimation. Based on the per-pixel prediction,
augmented reality or assistive awareness can be rendered,
e.g., acoustic feedback through the bone conducting ear-
phones. In addition, other sensors and accelerometers built in
the exoskeleton robot collect the motion and muscle signals
with the eventual goal to customize walking modes for the
users. In this work, we focus on visual perception of the
exoskeleton humanoid robot system.

Up until very recently, the applicability of per-pixel se-
mantic scene parsing on embedded devices is limited by
the speed. However, efficient end-to-end segmentation has
been an intriguing research topic with a growing community
focused on designing networks [2] [18] [19] that could parse
the entire scene in near real time. These advances have
made possible the utilization of pixel-level inference in time-
critical applications like semantic/polarimetric estimation
within wearable robotics context. Towards this objective, our
architecture is designed according to the encoder-decoder
architectures like SegNet [18], ENet [19] and our previous

ERFNet [2]. In FCN-like architectures [15], feature maps
from different layers need to be fused to generate a fine-
grained output. As expanded in Fig. 2, our approach uses a
more sequential architecture based on an encoder producing
down-sampled feature maps, and a subsequent decoder that
up-samples feature maps to match input resolution. Table I
also gives a detailed description of the proposed architecture
building on factorized convolutions, hierarchical dilations
and pyramid representations, which will be elaborated in the
following subsections.

TABLE I
LAYER DISPOSAL OF OUR PROPOSED NETWORK.

“OUT-F”: NUMBER OF FEATURE MAPS AT LAYER’S OUTPUT,
“OUT-RES”: OUTPUT RESOLUTION FOR INPUT SIZE OF 640×480.

Layer Type Out-F Out-Res

E
N

C
O

D
E

R

0 Original RGB/RGB-D image 3/4 640×480
1 Down-sampler block 16 320×240
2 Down-sampler block 64 160×120

3-7 5×Non-bt-1D 64 80×60
8 Down-sampler block 128 80×60

9-16/17 Dilated Non-bt-1D layers 128 80×60

D
E

C
O

D
E

R

0 Original feature map 128 80×60
1 Pooling and convolution 32 80×60
2 Pooling and convolution 32 40×30
3 Pooling and convolution 32 20×15
4 Pooling and convolution 32 10×8
5 Up-sampler and concatenation 256 80×60
6 Convolution C 80×60
7 Up-sampler C 640×480

B. Factorized convolution

Generally speaking, the residual layer adopted in state-of-
the-art networks has two instances, the bottleneck version
and the non-bottleneck design. Based on 1D factorizations
of the convolutional kernels, “Non-bottleneck-1D” (Non-bt-
1D) was redesigned in our previous work [2] [3] to strike
a rational balance between the efficiency of bottleneck and
the learning capacity of non-bottleneck. Precisely, the spa-
tial factorization into separable asymmetric convolutions is
leveraged to improve the computational efficiency of the 3×3
convolutions in the residual modules. Upon the addition of
down-sampler block inspired by ENet [19] that concatenates
the parallel outputs of a single 3×3 convolution with stride 2
and a max-pooling module, our encoder enables an efficient
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(a) (b) (c)
Fig. 3. Sequential and hierarchical architectures of dilated Non-bottleneck-
1D (Non-bt-1D) layers. From left to right: (a) Sequential architecture, (b)
4×2 hierarchical architecture, (c) 3×3 hierarchical architecture.

use of residual layers to extract feature maps and further
achieve semantic/polarimetric estimation in real time.

C. Hierarchical dilation

Starting from the observation that increased number of
layers helps to learn more complex and abstract features,
which leads to increased accuracy but also increased running
time, we propose the Hierarchical Dilated Non-bottleneck-
1D block (HD-1D block), which has two instances including
the 4×2 hierarchical architecture and the 3×3 hierarchical
design as illustrated in Fig. 3. Compared with conven-
tional schemes [21] [28], the proposed block is composed
of multilevel parallel dilated factorized convolutions with
various dilation rates. This hierarchical structure enables
the network to capture large field-of-view (FoV) in diverse
sizes, while the enlarged receptive field is earned with less
increased depth of deep CNNs. Vitally, the bypass connection
extends the proposed HD-1D block from a straightforward
repeated parallel structure by allowing each dilated layer to
attain access to other Non-bt-1D layers, which leads to an
implicit deep supervision, so that the depth of CNNs is not
completely sacrificed. In this sense, our HD-1D block offers
context assimilation on large FoV, inference speedup and
competitive accuracy compared with the original architecture
that sequentially stacks dilated Non-bt-1D layers [2] [3].

D. Pyramid representation

Another key modification lies in the decoder with specific
insights about contextual information and its cardinal sig-
nificance for the prediction of semantic/polarimetric infor-
mation. To detail this, two common issues are worthwhile
to remark for context-critical wearable robotics. Firstly, if
the network mis-predicts curbs on crosswalks, the wearer
would be left vulnerable in the dynamic environments given
such feedback. The common knowledge should be learned
by the data-driven approach that curbs are seldom over
crosswalks, and the specular water hazards that exhibit
higher polarization difference are generally encompassed by
traversable areas. Secondly, when navigating the sidewalks or
crossing the roads, the scene elements such as vehicles with

metallic surfaces, hazardous curbs and water puddles will
exhibit arbitrary sizes from the sensor perspective. Wearable
robotic system should pay much attention to different sub-
regions that contain inconspicuous-category stuff.

Learning more relationship between scene categories by
exploiting more context represents a promising approach to
mitigate these risks. In this reconstruction, the decoder archi-
tecture follows the pyramid pooling module as introduced by
PSPNet [29]. This module is leveraged to harvest different
sub-region representations, followed by up-sampling and
concatenation layers to form the final feature representations.
In this manner, local and global context information are
carried from the pooled representations at different locations.
By fusing features under a group of different pyramid levels,
the output of different levels in this pyramid pooling module
contains the feature map from the encoder with varied sizes.
As shown in Fig. 2(c), the weight of global feature from
the encoder is maintained, with 1×1 point-wise convolution
layer appended after each pyramid level to reduce the di-
mension of context representation. Subsequently, the low-
dimension feature maps are directly up-sampled to obtain
the same size features as the original feature map through
bilinear interpolation. Overall, Fig. 2 contains a depiction
of the feature maps generated by each of the block in
our architecture, from the RGB input to the per-pixel class
probabilities and final prediction.

IV. EXPERIMENTS

Experiment setup. The experiments are performed in
public spaces around Holley Metering Campus in Hangzhou.
A real-world pRGB-D dataset is captured using the polarized
stereo camera [6]. It is a commercial stereo camera that has
been the driving force behind the success of many robotic
vision algorithms, owing to its outstanding ability to perform
large-scale depth perception at up to 20m. We retrofit it
by attaching horizontal and vertical polarization filters on
the left and right camera respectively. In this fashion, we
have 9736 images with per-pixel ground-truth polarization
difference, which is obtained by warping the right image
to the left image to produce point correspondence using
the disparity that can be directly generated from the dense
depth image in the first place. Subsequently, to construct
a representation of polarimetric information, each polarized
stereo pair is exploited to calculate a pixel-wise brightness
difference image that indicates the degree of polarization
resulting from reflection. The dataset is randomly separated
into a training subset with 8758 images and a testing subset
with 978 images.

As far as navigational semantic segmentation is concerned,
the challenging Mapillary Vistas dataset [30] is chosen as
it consists of many traversability-related classes, featuring a
high variability in capturing viewpoints and spanning a broad
range of outdoor scenes on different pathways or sidewalks,
which corresponds to the usage scenario of the wearable
humanoid robot. In total, we have 18000 images for training
and 2000 images for validation with pixel-exact annotations.
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The metrics reported in this paper correspond to
Intersection-over-Union (IoU) that is prevailing in semantic
segmentation challenges, and following metrics originally
used in the field of depth estimation [16]:

• RMSE : root mean squared error.
• REL : mean absolute relative error.
• δi : percentage of predicted pixels where the relative

error is within a threshold. Formally put,

δi =
card

({
ŷi : max

{
ŷi
yi
, yi
ŷi

}}
< 1.25i

)
card({yi})

, (1)

where yi and ŷi are respectively the ground-truth value
and the prediction value, and card is the cardinality of a
set. In this regard, a higher δi indicates better prediction.

Training setup. To provide the assistive awareness regard-
ing the semantics of interest for users, we use 27 classes
for training, including the most frequent classes and some
assistance-related classes. These 27 classes cover 96.3% of
labeled pixels, which still allows to fulfill semantic scene
parsing. To robustify the model against the varied types
of images from real world, a group of data augmentations
are performed including horizontally flipping with a 50%
chance, jointly use of random cropping and scaling to resize
the cropped regions into 320×240 input images. Addition-
ally, random rotation by sampling distributions from the
ranges [−20o, 20o], color jittering from the ranges [-0.2, 0.2]
for hue, [0.8, 1.2] for brightness, saturation and contrast are
also applied. Our model is trained using Adam optimization,
initiated with a learning rate of 5×10−5 that decreases
exponentially across epochs. First the encoder is trained
by mapping an input to a down-sampled label, then the
corresponding decoder is appended to the trained encoder to
perform up-sampling and train the overall network followed
by a pixel-wise classifier. Following the weight determining
scheme in [19], the training of the full network reaches
convergence when focal loss [31] is adopted as the criterion:
Focalloss =

W∑
i=1

H∑
j=1

N∑
n=0

(1−P(i,j,n))
2L(i,j,n)log(P(i,j,n)) (2)

where P is the predicted probability and L is the ground
truth. The scaling factor (1 − P(i,j,n))

2 suppressed heavily
the loss contribution of correctly-segmented pixels (when
P(i,j,n) = 0.9, (1 − P(i,j,n))

2=0.01). In contrast, it sup-
pressed lightly the loss contribution of wrongly-segmented
pixels (when P(i,j,n) = 0.1, (1 − P(i,j,n))

2=0.81). In this
way, the focal loss concentrates the training on wrongly-
segmented pixels or hard pixels.

Comparatively, for polarization prediction, the network is
trained by mapping the RGB or RGB-D input to 255 levels of
polarization difference using cross-entropy loss with uniform
weights for all valid levels. Data augmentations used in this
training only involve random flipping, cropping and scaling
with same probability setting as semantic segmentation,
so that the key idea of inferring polarization information
from light intensity-based imagery is validated in a purely
experimental manner.

Real-time performance. As displayed in Table II, the
frame rates of our sequential/hierarchical ERF-PSPNets are

tested and compared with the state-of-the-art networks for
real-time semantic segmentation including ENet [19] and
LinkNet [20]. At 320×240, a resolution that is enough to
recognize any urban scene accurately and create augmented
visual/acoustic reality for the wearable humanoid robot, our
4×2 hierarchical architecture is the fastest when testing on
a cost-effective processor with a single GPU GTX1050Ti.
Admittedly, the runtime of LinkNet is not able to be tested
due to the inconsistent tensor sizes at down-sampling layers.
For this reason, we test at 448×256, another efficient reso-
lution at which most of the architectures can be evaluated,
where our 4×2 hierarchical architecture is also the fastest,
outperforming LinkNet by a slight margin. At 640×480, the
VGA resolution, ENet is the fastest, while our models still
maintain near real-time prediction. However, for navigation
assistance, 320×240 is arguably the optimum resolution
of the three resolutions, since pixel-exact features are less
desired by the user, but necessitate higher input resolution
that incurs longer processing latency. Still, the mean IoU
values of our models tested on Mapillary dataset [30] are
significantly higher than ENet and LinkNet. Here, ENet
and our sequential/hierarchical ERF-PSPNets are trained at
320×240, while LinkNet is trained at 448×256.

TABLE II
SPEED AND SEMANTIC SEGMENTATION ACCURACY ANALYSIS.
“FR”: FRAME RATE ON A COST-EFFECTIVE GPU GTX1050TI,

“MIOU”: MEAN INTERSECTION-OVER-UNION.

Network FR at
320×240

FR at
448×256

FR at
640×480 mIoU

ENet [19] 66.2FPS 57.5FPS 41.8FPS 33.6%
LinkNet [20] N/A 72.5FPS 31.6FPS 39.4%

Sequential
ERF-PSPNet 75.8FPS 62.5FPS 29.1FPS 48.4%

4×2 Hierarchical
ERF-PSPNet 82.0FPS 73.0FPS 33.9FPS 47.1%

3×3 Hierarchical
ERF-PSPNet 77.5FPS 69.4FPS 32.2FPS 48.1%

For the sake of completeness, we also test on an em-
bedded GPU Tegra TX1 (Jetson TX1) that enables higher
portability while consuming less than 10 Watts at full load,
and our models achieve more than 22.0FPS at 320×240.
Evidently, the hierarchical architectures are both faster than
the sequential architecture while only causing a minor drop
in segmentation performance.

Segmentation accuracy. Table III details the accuracy of
17 main navigational classes and the mean IoU values. It
could be told that the accuracy of most classes obtained with
the proposed ERF-PSPNets exceed the existing architectures
that are also designed for real-time applications by a wide
margin. Our architecture has the ability to collect rich
contextual information without major sacrifice of learning
from textures. Accordingly, only the accuracy of Sky is
slightly lower than LinkNet, while most important classes
for traversablity and traffic safety perception are both higher.

When comparing the hierarchical ERF-PSPNets with the
sequential version, although the mean IoU value of all classes
used for training is lower, they offer some benefits. Firstly,
in spite of being a possible subjective measure, the mean
IoU values of 17 main navigational classes are higher than
that achieved with the sequential design. Secondly, on some
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TABLE III
ACCURACY ANALYSIS USING INTERSECTION-OVER-UNION (IOU).

“MEAN-17”: MEAN IOU VALUE OF 17 NAVIGATION-RELATED CLASSES, “MEAN-27”: MEAN IOU VALUE OF ALL 27 CLASSES USED FOR TRAINING.
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ENet [19] 25.0% 71.2% 0.1% 39.2% 82.5% 57.2% 12.4% 33.0% 27.8% 35.1% 76.0% 32.6% 2.7% 94.4% 81.1% 52.9% 51.0% 33.6% 45.6%
LinkNet [20] 34.6% 74.4% 20.6% 45.1% 84.0% 58.2% 19.7% 37.1% 33.5% 37.7% 78.2% 42.3% 16.2% 97.2% 83.3% 54.9% 51.9% 39.4% 51.1%

Seq ERF-PSPNet 38.2% 76.4% 36.5% 51.9% 85.6% 63.8% 30.5% 43.1% 41.6% 47.2% 80.6% 48.1% 40.4% 96.6% 83.9% 59.6% 59.1% 48.4% 57.3%
4×2 Hier ERF-PSPNet 35.6% 76.1% 42.1% 50.7% 85.2% 62.1% 32.8% 43.1% 40.9% 48.0% 80.0% 47.1% 34.1% 96.5% 83.6% 59.3% 57.8% 47.1% 57.8%
3×3 Hier ERF-PSPNet 36.6% 76.2% 36.3% 52.0% 85.8% 64.5% 37.4% 42.7% 41.9% 49.8% 80.4% 47.1% 40.9% 96.5% 83.8% 58.9% 58.6% 48.1% 58.2%

(a) (b) (c)
Fig. 4. Class frequency of the Mapillary dataset. From left to right: (a) Pixel frequency (proportion of labeled pixels), (b) Instance frequency (number of
images with at least one labeled instance), (c) Natural logarithm of the product of pixel frequency and instance frequency.

semantic classes of interest, hierarchical designs achieve best
accuracy. For example, 4×2 hierarchical ERF-PSPNet out-
performs the sequential version on Motorcycle by a margin
of 5.6%, and 3×3 hierarchical ERF-PSPNet surpasses the
sequential version on Bike lane by a margin of 6.9%. We
believe such remarkable differences are not caused by the
random process of network training. As indicated by the
statistics in Fig. 4(b)(c), Bike lane and Motorcycle correspond
to the least frequent classes. For Rider, the class with the
third lowest instance frequency, 3×3 hierarchical design also
exceeds the sequential one, and the accuracy difference be-
tween 3×3 and 4×2 version reaches up to 6.8%. It suggests
that the proposed HD-1D block is promising to boost the
segmentation performance on less frequent classes. This is
a very positive aspect because it is always harder to achieve
good performance on less frequent classes. For example,
ENet fails to classify Motorcycle well as its accuracy is only
0.1%. Such problem of ENet was also reported in [21]. On
application side, hierarchical versions of ERF-PSPNet could
enhance the safety of humanoid robots in streets/lanes with
many motorcycles/bicycles that seriously influence the traffic
flow, especially within metropolitan areas of China cities
that have implemented public bicycle-sharing programs as
a strategy to promote low-carbon transportation. Noticeably,
the performance gap is more related with instance frequency
rather than pixel frequency as illustrated in Fig. 4.

It is worthwhile to mention that we have also pre-trained
the sequential version of ERF-PSPNet on ImageNet, eventu-
ally the mean IoU value reaches 48.8%, which is marginally
higher than that achieved with the “from scratch” strategy
(48.4%). This result reveals that although the transferability
of features of pre-training on a large dataset is advantageous,
our models can also reach good accuracy when trained on a
single dataset without the need of pre-training that adds train-
ing complexity and may suppose commercial limitations.

Polarization prediction. Taking an essential step further
than semantic segmentation, the produced polarimetric es-
timations are evaluated on the real-world pRGB-D dataset
captured with the polarized stereo sensor [6]. The reported
results in Table IV involve error metrics and accuracy
metrics. The error metrics are more related with spatial
details/representations, while the accuracy metrics expect
the model to deliver correct distribution of polarimetric
information structurally and contextually. Accordingly, the
sequential version of ERF-PSPNet achieves best results on
accuracy metrics, since the directly stacked residual layers
suppose larger depth and better capability to gather abstract
global context information. However, the 4×2 hierarchical
version yields better performance on error metrics, because
the bypass connection allows the network to use less levels
of structure to capture features from diverse sizes of FoV,
which help to infer correct spatial details. In contrast, the
3×3 hierarchical design is under-performing, which implies
that the removed Non-bt-1D with 16 dilation rate (see Fig.
3(c)) still matters in polarization prediction.

TABLE IV
POLARIZATION PREDICTION ANALYSIS.

Network/Input
Error metrics Accuracy metrics
(lower, better) (higher, better)

RMSE REL δ1 δ2 δ3

ENet [19] 13.87 6.37 46.82% 62.73% 68.85%
LinkNet [20] 13.30 6.42 45.47% 61.62% 67.93%

Seq 13.35 6.14 48.83% 63.85% 69.41%
4×2 Hier 13.17 6.09 48.59% 63.32% 68.85%
3×3 Hier 13.46 6.23 47.71% 62.94% 68.68%

RGB 13.35 6.14 48.83% 63.85% 69.41%
RGB-D 13.22 6.08 48.53% 63.75% 69.56%

HSV 13.56 6.39 47.24% 62.54% 68.36%
HSV-D 13.46 6.24 48.02% 63.65% 69.58%

V 13.29 6.18 48.09% 63.25% 68.82%
V-D 13.24 6.10 48.94% 64.00% 69.64%

Loosely speaking, polarization difference imaging is more
related to brightness, so it would be straightforward to
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predict it from HSV or only V channel using an alternative
input representation. Based on this intuition, we perform
the experiments to train and test by feeding/inputting the
network in different representations using the sequential
ERF-PSPNet. According to the results visualized in Table
IV, we arrive three findings. First, the V-D inputting achieves
best results on accuracy metrics which fits our expectations.
Second, on error metrics the RGB-D inputting achieves better
results which may be ascribed to the additional information
favorable to polarization classification, especially on specular
scene parts. Third, it is consistent that RGB-D inputting
outperforms RGB, while HSV-D outperforms HSV and V-D
outperforms V-based prediction. This means depth channel
has played a role because polarization is related with not
only surface characteristics but also range information. For
illustration, we have derived and leveraged the fact that
the polarization difference cue becomes strong at distances
above a minimum range in a previous pRGB-D sensorial
perception/assistance framework [6].

Qualitative analysis. Fig. 5 exhibits the montage of
pixel-wise results generated by our approach, LinkNet and
ENet. Not surprisingly, our approach not only yields longer
and more consistent semantic segmentation which will defi-
nitely benefit the traversability-related awareness of different
pathways and hazardous curbs, but also retains outstanding
ability to perceive traffic risks with regard to vehicles and
pedestrians. On specular surfaces, such as water puddles,
these models all suffer from a degradation of performance
when facing such common yet unseen scenarios, especially
the LinkNet, although it achieves higher accuracy than ENet.
The main insight gained from our experiment is that in
essence, the gap between the concepts of “accuracy” and
“robustness” is not only a matter of training images or CNN
learning capacity, but also a matter of data and annota-
tion diversity as well as information dimensionality. More
critically, neglecting such real-world conditions impairs the
overall performance of semantic segmentation and incurs a
bias of the appearance of scene elements to be analyzed.

The predicted per-pixel polarization difference image is
promising for conquering the problems on specular regions in
the real world. As depicted in Fig. 5, our approach produces
smooth polarimetric estimations of water hazards/wet areas
on the navigational path, transparent glasses on the parked
cars, and windows of the modern buildings, etc. Strikingly,
the network even predicts dense polarization information
that is unable to be captured by the polarized stereo sensor,
e.g., the water areas in the first row and the windows in
the third row, which visually evidences the generalization
capability. When comparing the qualitative performance be-
tween RGB/RGB-D inputting, it is true that the fed RGB-D
information helps to perceive more details, but it also brings
noises, especially at far-away ranges when depth information
become sparse and less reliable from the perspective of
our humanoid robot. Still, it is encouraging that robotic
perception based on pixel-wise semantic segmentation can
be enhanced to a great extent through polarization prediction.

V. CONCLUSIONS

Fueled by deep learning, semantic segmentation has be-
come a de-facto standard in robotics. To complement real-
world semantic classification on specular surfaces, we pro-
pose to estimate per-pixel polarization information, which
can be used to prevent from potential hazards for wearable
humanoid robots, especially safety-critical ones fulfilling
navigational tasks, e.g., our assistive exoskeleton with aug-
mented reality glasses. Traditionally, polarization informa-
tion is independent with light intensity-based information
such as RGB and depth data. Our work bridges the optical
polarization and intensity information through real-time end-
to-end prediction using a cluster of customized efficient
networks. Based on our proposal, it is highly portable to
apply semantic and polarimetric estimations on embedded
devices by using only a single RGB camera, without resort-
ing to expensive micro-polarizer sensors, or multiple cameras
attached with rotatable polarization filters.

We are aware that there is much room for improve-
ment in this research line, e.g., the indoor robustness. It
is planned to collect larger ground-truth dataset with high-
end polarized sensor that can produce smooth direct po-
larimetric measurements, and make our approach generalize
beyond polarization difference imaging in a broad variety
of scenarios. Another promising direction is to experiment
with different loss functions to provide meaningful training
supervision, and to include depth-wise separable convolution
as an additional shallow branch for spatial detail fine-tuning.
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