
 
 

  

Abstract— In this paper we present a new real-time 
hierarchical (topological/metric) Visual SLAM system 
focusing on the localization of a vehicle in large-scale outdoor 
urban environments. It is exclusively based on the visual 
information provided by both a low-cost wide-angle stereo 
camera and a low-cost GPS. Our approach divides the whole 
map into local sub-maps identified by the so-called fingerprint 
(reference poses). At the sub-map level (low level SLAM), 3D 
sequential mapping of natural landmarks and the vehicle 
location/orientation are obtained using a top-down Bayesian 
method to model the dynamic behavior. A higher topological 
level (high level SLAM) based on references poses has been 
added to reduce the global accumulated drift, keeping real-
time constraints. Using this hierarchical strategy, we keep 
local consistency of the metric sub-maps, by mean of the EKF, 
and global consistency by using the topological map and the 
MultiLevel Relaxation (MLR) algorithm. GPS measurements 
are integrated at both levels, improving global estimation. 
Some experimental results for different large-scale urban 
environments are presented, showing an almost constant 
processing time. 

I. INTRODUCTION 
HE interest in visual SLAM has grown tremendously in 
recent years as cameras have become much more 

inexpensive than lasers, and also provide texture rich 
information about scene elements at practically any 
distance from the camera. Currently, the main goal in 
SLAM research is to apply consistent, robust and efficient 
methods for large-scale environments in real-time. On the 
other hand, one of the most popular sensors in outdoor 
navigation is the GPS. However, their standalone 
information is not always as accurate as needed, specially 
on urban environments, mainly due to satellites occlusion 
because of high buildings, tunnels, etc.  

One of the most popular methods to solve the SLAM 
problem is the Extended Kalman Filter (EKF) and more 
recently FastSLAM [1]. The first one has the covariance 
matrix growing problem while the second one discretizes 
the problem by using particle filters. Both of them are 
limited, in terms of computing time, when the environment 
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becomes larger. To cope with that issue, two different 
approaches have been developed that try to divide the 
whole map into smaller ones in a hierarchical way. The 
original idea of having a set of sub-maps with uncertain 
relations dates back to [2] and [3]. The first approach 
introduces a high metric level over pieces of the metric map 
in the so-called Metric-Metric approach [4] [5] [6]. The 
second one is referred as the Toplogical-Metric one, which 
adds a high topological level over the metric sub-maps [7] 
[8] [9] [10] [11]. A third alternative to face the large scale 
SLAM problem is to use only topological maps without 
sub-maps associated to their vertex [12] [13]. These maps 
lack the details of the environments but they can achieve 
good results for certain applications. 

Some of the last contributions to large scale path 
estimation using visual sensors have focused on recovering 
only the estimated vehicle local path using visual odometry, 
and adding a topological level for a globally consistent 
solution. These methods avoid the estimation of external 
features because they use other strategies for loop closing 
and global positioning correction. One example of this 
method is presented in [14], where they present an 
implementation that estimates ego-motion over a large path 
using a simple laptop webcam. Global consistency is 
achieved by using the RatSLAM method [15]. Another 
approach is presented in [16], based on the quadrifocal 
relations between stereo image pairs, using dense greyscale 
information. The method, taking a reference image pair, 
predicts the visual appearance of the scene by warping the 
reference using the quadrifocal geometry.  

Our final goal is the autonomous outdoor navigation of a 
vehicle in large-scale environments where GPS signal does 
not exist or it is not reliable (tunnels, urban areas with tall 
buildings, mountainous forested environments, etc). 
Focusing on the SLAM approach, in one hand Metric-
Metric methods do not keep a topological structure that 
helps on a global optimization in large scale environments 
as well as path planning techniques for navigation 
purposes. Topological approaches do not provide accurate 
information of vehicle state estimations instead. Therefore, 
our proposal to solve the large-scale problem is based on 
the hierarchical topological-metric approach, resembling on 
the NCFM algorithm [8]. Our metric level works in a 
similar way than visual odometry because the main goal, at 
this level, is the local positioning of the vehicle. 
Nevertheless, our proposal keeps local consistency, by 

Real-Time Hierarchical GPS Aided Visual SLAM on Urban 
Environments 

David Schleicher, Luis M. Bergasa, Manuel Ocaña, Rafael Barea and Elena López 

T

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 4381

Authorized licensed use limited to: Univ de Alcala. Downloaded on April 20,2010 at 14:36:06 UTC from IEEE Xplore.  Restrictions apply. 



 
 

mean of the EKF, and global consistency by mean of the 
topological map and the MultiLevel Relaxation (MLR) 
algorithm [17]. The work presented in [11] proposes a 
hierarchical SLAM approach similar to ours, which defines 
a set of independent local maps linked to a global 
topological map, where each node (fingerprint) defines the 
reference frame for each of the local map. The global map 
is optimized using a recursive non-linear constrained least 
squares optimization algorithm instead of the MLR method. 
MLR improves the computation time of the least squares 
formula thanks to the Multi Level Relaxation technique. 
This leads to a slower running than the method presented 
on this work. Moreover, this system is based on a laser 
range finder sensor instead of a visual sensor as the used on 
this work. Our proposal uses visual information combined 
with the robust SIFT descriptors providing a more reliable 
way for loop detection. 

This paper is organized as follows: the general structure 
of the system is described in section II. Section III presents 
the low level SLAM implementation, section IV studies the 
high level SLAM. In section V a large set of results is 
given to test the behavior of our system. Section VI 
contains our conclusions and future work. A demonstration 
video is published together with the paper. 

II. IMPLEMENTATION 
Our approach defines a Low Level SLAM, where the 

system uses stereo vision to feed an EKF to create local 
sub-maps which are expressed in local coordinates relative 
to some reference frames (fingerprints). Local poses are 
periodically fused with GPS measurements by using (1) 
(2). The only output used from the low level is the relation 
of the final vehicle frame (current fingerprint) relative to 
the reference vehicle frame (previous fingerprint). Over 
this low level a High Level SLAM is defined, where 
fingerprints uncertain relations are stored in a graph of 
relations defining stochastic constraints on the reference 
vehicle frames (fingerprints), as shown on Fig. 1. GPS is 
also added there as an absolute constraint on such a frame. 
This graph of relations is fed into MLR, that computes the 
least square estimate for the graph. Unfortunately, current 
implementation of MLR does not provide covariance 
information for this estimate. So, to derive uncertainty 
information, our approach implements, in parallel, another 
procedure. The algorithm exploits, that uncertain metrical 
relations can be compounded by (3). So to obtain 
uncertainty information about a reference vehicle pose 
(fingerprint), the shortest path in the above mentioned 
graph is taken, where the different relations from local 
maps are compounded. To detect loop closing, some of the 
fingerprints add visual information to the pose that helps to 
identify previously visited places. These kind of 
fingerprints are called SIFT fingerprints because they are 
based on SIFT features (Scale Invariant Feature 

Transform). They are taken under significant vehicle turns 
because in urban environments loop closing will appear 
only if the vehicle turns in perpendicular or quasi- 
perpendicular streets. In case of long-term GPS signal lost, 
at the time of signal recovering, vehicle pose is corrected 
and the global map is optimized by mean of the MLR as 
well. 

 
Fig. 1.  General architecture of our two hierarchical levels SLAM. Each 
sub-map has an associated fingerprint. 

III. LOW LEVEL SLAM 

A. EKF implementation 
This level is inspired on A. Davison monocular approach 

[18], however it has been modified for a stereo 
implementation as detailed in [19]. The low level state 
vector for the EKF is defined as ( )T

vl YYXX L21= , 
which is composed by the vehicle state vector 

( )T
robrobrobv vqXX ω=  plus all local landmarks on the 

sub-map iY . Landmarks are identified by their 
corresponding features, which on this implementation are 
defined by the whole set of pixels of the patch. On this 
equation, robX  is the 3D position of the vehicle relative to 
the local frame, ( )Tzyxrob qqqqq 0=  is the orientation 
quaternion, robv  is the linear speed and ω  is the angular 
speed. For clarity reasons the sub-map notation is omitted. 

B. Low Level GPS Fusion 
Each time a new GPS reading ( )T

GPSGPSGPS yxX =  is 
available, which under normal conditions occur at 1s 
period, we proceed to fuse it with our visual estimation. As 
GPS does not provide orientation information, initially we 
only calculate the position, and then the orientation is 
estimated, as explained later. Although GPS provides 
height data, as the high level SLAM manages only 2D 
information only 2D GPS data will be used. Then, to 
calculate the final position estimation we merge both 
estimates making use of their respective 2D uncertainty 
covariances, as we depict in equation (1). This is obtained 
by applying a two-dimensional statistical approach based 
on Bayes Rule and Kalman filters. Here, 

obX Pr
 and 0

Pr obP  
are the 2D vehicle global position and global covariance 
respectively, obtained as the 3D vehicle position projection 
on the ground plane. This global 3D uncertainty 0

robP  is 
calculated using the procedure explained in the next 

4382

Authorized licensed use limited to: Univ de Alcala. Downloaded on April 20,2010 at 14:36:06 UTC from IEEE Xplore.  Restrictions apply. 



 
 

section. Resultant estimation improves uncertainty 
distribution because it is calculated as the product of the 
two original ones.  

( ) ( )obGPSGPSobobob
fusion XXPPPXX Pr

10
Pr

0
PrPr −++= −         (1) 

GPS uncertainty 
GPSP  is obtained as a function of the 

HDOP (Horizontal Dilution Of Probability), containing the 
variable error provided by the GPS, and the UERE (User 
Equivalent Range Error), covering the estimated constant 
errors along time. In the same way, the following estimated 
covariance is calculated by mean of equation (2): 

( ) 0
Pr

10
Pr

0
Pr

0
Pr obGPSobobob

fusion PPPPPP −+−=                    (2) 

Once the vehicle uncertainty has been updated, subsequent 
landmarks measurements will be based on this covariance. 
Therefore, these landmarks covariances will be calculated 
based on the already updated vehicle covariance. Vehicle 
orientation is estimated from the vector that joints the two 
last GPS position updates. In order to obtain the best 
estimation for the MLR nodes we generate them in a 
synchronized way with the GPS updates. Therefore, when 
conditions for a new node generation are ready, we wait 
until a new GPS update is available. 

IV. HIGH LEVEL SLAM 
Our SLAM implementation adds an additional 

topological level, called high level SLAM, to the explained 
low level SLAM in order to keep global map consistency 
with almost constant processing time. This goal is achieved 
by using the MLR algorithm over the reference poses. 
Therefore, the global map is divided into local sub-maps 
referenced by the mentioned fingerprints, one by one. 
There are two different classes of fingerprints: Ordinary 
Fingerprints and SIFT fingerprints. The first ones are 
denoted as { }LlfpFP l ...0∈= . Their only purpose is to store 
the vehicle reference pose lfp

robX  and local covariance lfp
robP  

relative to the previous one, i.e., the reference frame of the 
current sub-map. The sub-map size is defined to keep the 
EKF linearization error low enough using the criterion 
explained in [10] in one hand. The other constraint is to 
keep the processing time, highly dependent on the low 
level landmarks per sub-map, below the real time constrain. 
Therefore the resultant sub-map size, after experimental 
testing, is limited to 10 m of covered path.  

SIFT fingerprints are a sub-set of the first ones, denoted 
as { }LQQqFPsfSF q <∈∈= ,...0 . Their additional 
functionality is to store the visual appearance of the 
environment at the moment of being obtained. That is 
covered by the definition of a set of SIFT features 
associated to the fingerprint, which identifies the place at 
that time. These fingerprints are taken only under the 
condition of having a significant change on the vehicle 
trajectory, defined by a maximum angular speed increase 

maxγ  followed by a minimum decreasing minγ , both 
experimentally obtained. Each time a new SIFT fingerprint 
is taken, it is matched with the previously acquired SIFT 
fingerprints within an uncertainty search region. This 
region is obtained from the vehicle global covariance 0

robP  
because it keeps the global uncertainty information of the 
vehicle. If the matching is positive, it means that the 
vehicle is in a previously visited place and a loop closing is 
identified. Then, the MLR algorithm is applied in order to 
determine the maximum likelihood estimate of all nodes 
poses. Finally, nodes corrections are transmitted to theirs 
associated sub-maps. 

A. Local Sub-maps 
 Each time a new fingerprint is created, an associated 

sub-map is created as well. Each of the old sub-maps 
defines the pose 1−l

l

fp
fpX  and covariance 1−l

l

fp
fpP  of a 

fingerprint relative to the previous node. The current sub-
map defines the vehicle pose lfp

robX  and covariance lfp
robP  

relative to the previous node. So, the global pose of the 
vehicle is computed by compounding these relations with 
uncertainty using the equation 1

1

00 fp
robfprob XXX ⊕= , where 

0
robX  and 0

lfpX define the vehicle and previous reference 
absolute poses respectively. Due to the need of being aware 
about the current global uncertainty at any time, we need to 
maintain 0

robP  updated (see Fig. 2). We calculate it by using 
the coupling summation formula (see [8]), obtained from 
the compounding operation, in a recursive way. The 
process can be summarized as follows: first, to obtain 0

robP  
we need to evaluate (3). 

   
T

fp
rob

robfp
robfp

rob

rob

T

fp

rob
fp

fp

rob
rob l

l

l

l

l

l
X
XP

X
X

X
XP

X
XP ⎟⎟

⎠

⎞
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⎝

⎛
∂
∂⋅⋅

∂
∂+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂⋅⋅

∂
∂=

00

0

0
0

0

0
0       (3) 

Second, to obtain the global covariance of the current 
fingerprint 0

lfpP , we must apply (3) again, but this time to 
the previous fingerprint. We apply the same incremental 
procedure until we reach the first fingerprint, where 

00 fp
fpfp ll

PP =  can be directly solved. At the time of sub-map 
creation, the current vehicle local uncertainty 1+lfp

robP , is 
assumed to be 0. The visible landmarks at that time are 
removed from the previous sub-map and incorporated to 
the new one, with local coordinates 1+lfp

iY . To calculate 
them from their expression on the previous sub-map lfp

iY , 
we apply the common root coupling formula proposed on 
[8]. It allows changing the base reference from 

lfp  to 
1+lfp  

by expressing landmarks on the vehicle reference frame 
1+lfp

robX , which at that time is the actual new sub-map 
reference frame. To obtain the landmarks covariances 
expressed on 

1+lfp base frame we make use of the common 
root coupling as well (4). As the local initial vehicle 
covariance is assumed 0, at the initial step, landmarks 
covariances depend only on the uncorrelated measurement 
noise contribution (see [18]). Therefore new landmarks are 
initially uncorrelated among them, so the final total sub-
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map covariance at sub-map creation is composed as a 
block-diagonal matrix of vehicle covariance plus 
landmarks covariances. 
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B. SIFT Fingerprints 
Our system identifies a specific place using the SIFT 

fingerprints. These fingerprints, apart of the vehicle pose, 
are composed by a number of SIFT [20] [21] [22] 
landmarks distributed across the reference image and 
characterize the visual appearance of the image. The 
identification is achieved by the association of a 128 length 
descriptor to each of the features, which will identify 
uniquely all of them. These SIFT feature descriptors are 
loaded in each SIFT fingerprint joint to the left image 
coordinates and the 3D vehicle position for the fingerprints 
matching process. To evaluate the distinctiveness of SIFT 
fingerprints a matching study has been carried out, as 
shown on Table 2. 

C. Loop closing detection 
To detect a loop closure, once a new SIFT fingerprint is 

generated, it is matched with all stored SIFT fingerprints 
within the uncertainty area defined by 0

robP . The matching 
process is based on the Euclidean distance between the 
descriptors of the SIFT features on both fingerprints, as 
well as the geometrical relations between matched features 
on both images. A total matching probability is calculated 
taking into account both the number of matched features, as 
well as the fitting of the lines connecting each pair of 
matched SIFT features, into a model [23]. RANSAC 
method is used for that purpose. 

D. Map Correction 
Once a loop-closing has been detected, the whole map must 
be corrected according to the old place recognized. To do 
that, we use the MLR algorithm [17], which has proved to 
show a high efficiency in terms of computation cost and 
map complexity. The purpose of this algorithm is to assign 
a globally consistent set of Cartesian coordinates to the 
fingerprints of the graph based on local, inconsistent 
measurements, by trying to maximize the total likelihood of 
all measurements. The MLR inputs are the relative poses 
and covariances of the fingerprints. As outputs MLR 
returns the most likely set of reference poses, i.e., the set 
already corrected ( )TfpfpfpM L

XcXcXcX 000
21

L= . The 
MLR algorithm manages only 2D information, therefore 
we need to obtain the 2D related fingerprint pose 

( )TDDD
fp
D yxX l

2222 θ=  and covariance lfp
DP2  from 1−l

l

fp
fpX  

and 1−l

l

fp
fpP . Then the corresponding corrected fingerprints 

MX  are obtained, assuming flat terrain. To calculate the 
global vehicle uncertainty 0

robP  after closing a loop, there is 
a situation where one fingerprint has relations with more 

than one additional fingerprint, as occurs, for example, to 
3sf  (see Fig. 2). To calculate the current 0

robP  we apply the 
recursive coupling summation formula (3) to the shortest 
possible path from the first fingerprint to the current 
position, which leads to the lowest 0

robP . Being aware of the 
current global uncertainty is important in order to increase 
the fingerprints search process efficiency because the 
number of matched SIFT fingerprints will be lower.  

 
Fig. 2. Representation of the vehicle global uncertainties 0

robP , 
increasing along the vehicle path at each of the reference poses. Solid red 
lines represent vehicle global uncertainties at SIFT fingerprints places. 
Numbers represent each fingerprint. Graph also shows an example of 
shorter path selection for global uncertainty calculation after a loop-
closing situation. 

The last step is to transfer the correction performed on 
the high SLAM level into the Low SLAM level. This is 
implicitly done by the transformation of each sub-map 
reference frame, i.e. all the landmarks within each sub-map 
will be moved according to their corresponding reference 
frame. By doing this, we keep the relative positions and 
covariances of the landmarks unchanged respect to their 
corresponding local sub-map reference frame. Therefore, 
sub-maps independency is kept as well. 

E. High Level GPS Data Fusion 
At this level, GPS data fusion is taken into account only 

at long term signal loose, which is usually the case within 
tunnels or in urban areas with high buildings. In that case, 
the state correction implies a global map correction that 
concerns mainly the section where the GPS signal was 
unavailable (see Fig. 4). Because GPS uncertainty is global, 
when GPS signal is available, fusion is carried out on 
global coordinates and nodes are introduced within the 
graph as global relations, i.e. MLR algorithm is fed with 
the global pose 0

lfpX  and covariance 0
lfpP  of each 

fingerprint. 

V. RESULTS 
In order to test the behaviour of our system several video 
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sequences were collected from a commercial car manually 
driven in large urban areas, covering more than 20 km. The 
employed cameras for the stereo pair were the Unibrain 
Fire-i IEEE1394 with additional wide-angle lens, which 
provide a field of view of around 100º horizontal and 
vertical with a resolution of 320x240. The baseline of the 
stereo camera was 40 cm. Both cameras were synchronized 
at the time of commanding the start of transmission. The 
cameras were mounted inside the car on the top of the 
windscreen and near the rear-view mirror. We used a low-
cost standard GPS was GlobalSat BU-353 USB.  

Part of the path covered by the vehicle is shown on Fig. 
3. The average speed of the car was around 30 km/h. The 
complete covered path was 3.17 km long. It contained 5 
loops inside, taking 8520 low level landmarks and 281 
nodes. More landmarks are located on high buildings areas, 
while GPS signal has more strength in open-spaced areas 
providing better location estimation. This shows that both 
sensors complement each other, providing good estimations 
for different situations. To evaluate the performance of our 
system we compared our results with a ground truth 
reference, obtained with an RTK-GPS Maxor GGDT, with 
an estimated accuracy of 2 cm. On Fig. 4 we show the high 
level map before and after a GPS signal recovering, as well 
as the optimization performed by the MLR. The Euclidean 
error relative to the ground truth of both the standard GPS 
and our combined SLAM implementation is depicted in 
Fig. 5. We obtain an average error of around 4 m and a 
reasonably low error at the moments of total GPS loose. 
This error is compared to the global uncertainty 
covariances for each node using the Euclidean formula 
applied to the X and Z components as well, showing 
reasonably consistent error estimates. As expected, 
uncertainty monotonically grows on GPS unavailable 
sections due to the relative measurements provided by the 
visual sensor. Fig. 3 depicts the estimation of our combined 
SLAM system and the standard GPS alone compared to the 
ground truth. The GPS signal was lost at different moments 
at the beginning of the path. The longest signal neglect 
period corresponds to the one shown on Fig. 4. The period 
begins on frame 453 and finishes at frame 1436, as shown 
on Fig. 5. The increased estimation error can be easily 
observed on that segment. However, we still have a 
relatively accurate estimation to be able to locate the 
vehicle. Respect to the processing time, the real-time 
implementation imposes a time constraint, which shall not 
exceed 33 ms for a 30 frames per second capturing rate. All 
results were taken using an AMD Turion 2.0 GHz CPU. 

On Table 1 we show the average processing times for 
some of the most important tasks in the process. Low level 
SLAM tasks are limited in regards of time consuming due 
to the limited sub-map size. High level SLAM tasks 
slightly increase over time, but as they do not belong to the 
continuous self-locating process carried out by the low 

level SLAM they can be calculated apart in a parallel 
process.  

Fig. 3.  Path estimation using only a standard low-cost GPS (dotted line), 
our SLAM method by means of vision and GPS (solid line), and the 
ground truth (dashed line). Thick red lines indicate path sections where 
GPS was unavailable. 

 
Fig. 4.  MLR diagram before (left) and after (right) GPS recovering. 

 
Fig. 5.  Euclidean distance error ( 22 ZX +=ε ) using standard 

single GPS (up) and our combined SLAM system (down). Global 
covariances uncertainties for each node are shown as well. 

Therefore, the total processing time is proved to remain 
below the real time constraint within all our testing 
environments. On Table 2 we show a comparative study of 
the robustness to illumination changes. We focused on the 
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SIFT fingerprints matching process. We took 40 images 
database of the same place at different times along the day. 
We registered the number of erroneous matching (false 
positives) as well as missing ones (false negatives). From 
the results we can conclude that the probability of a false 
positive is extremely low, keeping reasonable values for 
false negatives at daylight. During the night results get 
worse on false negatives, mainly due to the decreasing of 
illuminated areas. 

TABLE I 
PROCESSING TIMES 

Low level SLAM processing 
times 

High level SLAM processing 
times (parallelized). 

Number of features / frame 5 Number of features 8520 

 Number of nodes 281 

Filter step Time  Time 

Measurements 3 ms Fingerprint matches 3 s 

Filter update 5 ms 

Feature initializations 7 ms 
Loop closing + graphic 
representation time 

1 s + 
10s 

GPS processing (1s 
sampling period) 4ms   

TABLE II 
ROBUSTNESS TO ILLUMINATION CHANGES 

% False positives /  
% False negatives 

Daylight 
morning 

Daylight 
afternoon Sunset Night 

Daylight morning 0 / 7.5 1 / 10 0 / 10 0 / 40 

Daylight afternoon  1 / 7.5 0 / 12.5 0 / 32.5 

At sunset   0 / 10 0 / 35 

At night    0 / 20 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper we have presented a two levels 

(topological/metric) hierarchical SLAM that allows self-
locating a vehicle in a large-scale urban environment using 
a low-cost wide-angle stereo camera and a standard low-
cost GPS as sensors. We have shown the positioning 
improvements of our system regarding to use a simple 
standard GPS, opening the possibility to improve current 
vehicle navigation systems. Our system use a compounding 
and fusing algorithm to derive uncertainty information on a 
MLR process. This procedure may appear strange, but it is 
correct because MLR computes a least-square estimate and 
the compounding and fusion operations provide actual 
upper bounds on the uncertainty of this estimate. One 
limitation of our system is that flat terrain is assumed for 
matching the 2D map of the topological level with the 3D 
maps of the metric one. 

As future work, we plan to use an estimator on the high 
level SLAM that can provide covariance information in 
order to get the estimate and its uncertainty from the same 
procedure. Then, we plan to generalize the MLR algorithm 
in order to manage 3D characteristics, as well as to replace 
the low level SLAM by Visual Odometry. Our final goal is 

the autonomous outdoor navigation of a vehicle in large-
scale urban environments with recurrent trajectories (bus 
journeys, Theme Parks internal journeys, etc) where a 
SLAM system as ours can be very useful.   
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