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Abstract— The design of a safe and reliable Autonomous
Driving stack (ADS) is one of the most challenging tasks
of our era. These ADS are expected to be driven in highly
dynamic environments with full autonomy, and a reliability
greater than human beings. In that sense, to efficiently and
safely navigate through arbitrarily complex traffic scenarios,
ADS must have the ability to forecast the future trajecto-
ries of surrounding actors. Current state-of-the-art models
are typically based on Recurrent, Graph and Convolutional
networks, achieving noticeable results in the context of vehicle
prediction. In this paper we explore the influence of attention
in generative models for motion prediction, considering both
physical and social context to compute the most plausible
trajectories. First, the past trajectories are encoded using a
LSTM network which feed a Multi-Head Self-Attention module
to compute the social context. Then, plausible goal points are
extracted from the driveable area of the HDMap information
(physical context). Finally, the input of our generator is a white
noise vector sampled from a multivariate normal distribution
while the social and physical context are its conditions to
predict plausible trajectories. We validate our method using
the Argoverse Motion Forecasting Benchmark 1.1, achieving
competitive unimodal results. Our code is publicly available at
https://github.com/Cram3r95/mapfe4mp .
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I. INTRODUCTION

In order to achieve a reliable navigation, Autonomous
Driving stacks (ADS) have to perform safe driving be-
haviours following conventional traffic rules. Regarding this,
one of the most challenging tasks of an ADS is to forecast
the future motion of surrounding actors, used by AD algo-
rithms such as target selection and path planning throughout
the navigation. To capture the complexity of an arbitrarily
complex scenario, a robust and reliable motion prediction
model should not only take into account the past trajectory
of the most important agents around the vehicle, but also
physical information (such as on-board sensor information
or prior knowledge identified with map information [2]) and
the interaction of the ego-vehicle with the environment. The
main challenge in this task is the human driver behaviour
can neither be modeled and consequently predicted properly,
specially in negotiating situations [3] [4] with many par-
ticipants where considering agent-environment/agent-agent
interactions [5] plays a determinant role. Then, resulting
trajectories may not be necessarily feasible, not covering
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Fig. 1. MP Scenario in Argoverse [1]. We represent: our vehicle (ego),
the target agent, and other agents. We also show the groundtruth trajectory,
the prediction and potential goal-points. Markers are current positions.

the full spectrum of possible trajectories that a vehicle
can take. In that sense, a more natural way of capturing
the feasible directions [6] is to first compute a set of
intermediate target points from a distribution of acceptable
positions. In this work we explore the influence of attention
mechanisms in generative models, in particular based on
Generative Adversarial Network (GAN) [7], to carry out
the task of motion prediction. Our model considers both
physical context, computing acceptable target points from the
driveable area around the target agent, and social context,
LSTM (Long Short-Term Memory) [8] based encoder as
input to a Multi-head self-attention module, as input of our
generator, which combines the scene understanding around
the agent vehicle (target agent to predict its trajectory)
and the corresponding noise vector associated to generative
models to compute the trajectories using a LSTM decoder,
as illustrated in Fig. 2. In this context, the discriminator is
applied in order to force the generator model to produce
more realistic samples (trajectories, as shown in Fig. 1),
hence, to improve the performance. The remaining content
of this work is organized as follows. The next section
reviews some state-of-the-art algorithms for vehicle motion
prediction. Section III presents our pipeline, focused on a
combination of precomputed target points, Multi-Head [9]
Self Attention and LSTM-based Motion Encoder to generate
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the most plausible trajectories in a Routing Module (LSTM
based decoder), framed by a generative adversarial training
to model the stochastic nature of the process. Section IV
presents quantitative and qualitative results in the Argoverse
Benchmark, illustrating the strengths and weaknesses of our
model. Finally, Section V concludes the paper.

II. RELATED WORKS

In this section we review recent literature on motion
prediction, illustrating different works focused on pedestrian
prediction and vehicle prediction, as well as social attention
to capture complex social interactions among agents.

A. Motion Prediction

Prior knowledge on motion prediction in pedestrian
datasets [11] [12] usually focuses on Deep Learning methods
such as Long Short-Term Memory (LSTM) [8] and Gener-
ative Adversarial Network (GAN) [13]. SocialLSTM [14]
proposes an LSTM model that can jointly predict the paths
of all agents in the scene taking into account the common
sense rules and social conventions using a social-pooling
module. SocialGAN [15] enhances SocialLSTM with a gen-
erative adversarial framework, introducing a variety loss that
encourage the network to cover the space of plausible paths
and proposing a novel pooling global social pooling vector
that encodes the subtle cues for all agents involved in the
scene. SoPhie [5] considers not only the path history of all
agents but also the physical context information (captured
by a top-view static image, computing salient regions of the
scene), combining physical and social attention mechanisms
in order to help the model knows what to extract and where
to focus. Goal-GAN [6] predicts the most likely goal points
of the agent of interesting, estimating a set of trajectories
towards these goals using both physical and social context, as
proposed by [5]. On the other hand, in the context of vehicle
prediction [1] [16], prior information takes more importance
regarding the risk at certain velocities in urban/highway
environments in order to perform safe navigation. High-
fidelity maps (hereafter, HDMaps) have been widely adopted
to provide offline (also known as context) information to
complement the online information provided by the sen-
sor suite of the vehicle and its corresponding algorithms.
Recent learning-based approaches [17][18][19] [20] present
the benefit of having probabilistic interpretations of different
behaviour hypotheses, requiring to build a representation to
encode the trajectory and map information.

B. Social Attention

In a similar way to humans that pay more attention to close
obstacles, people walking towards them or upcoming turns
rather than considering the presence of people or building
far away, the perception layer of a self-driving car must be
modelled to focus more on the more relevant features of the
scene. Social Attention is a mechanism that allows selective
interactions within relevant agents. SoPhie [5] computes a
different context vector for each agent, in such a way other
agents features are sorted in terms of their relative distance

to the agent of interest. Then, a soft attention mechanism is
used to compute a context feature vector, which represents
the social context. Nevertheless, a fixed size (Nmax agents)
list that considers the context of all agents is sensitive to
small variations [4] of other agents positions. In that sense,
SocialWays [21] presents a hand-crafted relative geometric
feature to produce a set of normalized weights, in such a
way the context vector represents a convex sum of other
feature vectors (context of each agent) that is invariant to the
ordering. Nevertheless, these attention mechanisms were not
designed to model complex interactions, no more than angles
and distances due to the inherent problem of pedestrian
prediction, in such a way we must find this challenging
interactions in the vehicle motion prediction task to account
for specific behaviours like overtaking, Adaptive Cruise
Control (ACC), emergency braking or yielding. Vemula
et al. [22] uses a dot product attention module (inspired
from the attention mechanism proposed by [23] for sentence
translation), allowing joint forecast of every agent in the
scene without spatial limitations, considering long range
interactions regardless the ordering of the input vehicles
tracks and the number of vehicles. Moreover, [22] combines
this dot product with a spatio-temporal graph representation
to take into account temporal and spatial dependencies of
the agents, such as their absolute/relative positions and time
step movements. Mercat et al. [4] presents a multi-head
extension of this dot attention mechanism, where each agent
is embedded by means LSTMs before computing the dot
product attention in order to produce social interactions.

III. OUR APPROACH

In this work we aim to develop a model that can suc-
cessfully predict plausible future trajectories in the context
of vehicle prediction, taking into account not only the past
trajectory of the corresponding agent but also the past state of
the most relevant obstacles around it and HDmap information
to compute a set of acceptable target points representing the
physical constraints for our problem.

A. Problem Definition

We tackle the task of predicting the future positions of
certain agents. Each position throughtout the whole sequence
(past observations and future observations) is expressed via
via x and y coordinates in the 2D ground plane. As input,
we are given the past trajectory of all agents in the scene as
well as prior knowledge, identified with HDMap information
in the case of Argoverse benchmark 1.1. We observe the
trajectories Xi = {

(
xt

i ,y
t
i
)
∈R2|t = 1, . . . , tobs } of N agents in

the scene and the corresponding physical information of the
scene (2D HDMap), observed at the timestep tobs. Our goal
is to predict the future positions Yi = {

(
xt

i ,y
t
i
)
∈R2|t = tobs+

1, . . . , tpred} of a particular agent, also referred as the target
agent. These future trajectories should be compliant with
the social (i.e. traffic rules, such as right-a-way, crosswalk,
left/right turning) and physical (ensuring the presence of the
vehicle in the driveable area) constraints of the scene.
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Fig. 2. Overview of our Attention-based Generative Model. We distinguish three main blocks: 1) Target points extractor, which uses HDMap
information and agent past trajectory to compute acceptable target points [10], 2) Attention module, responsible for encoding the trajectories of the
surrounding vehicles and applying Multi-Head Self-Attention, 3) LSTM based GAN module, which consists of a LSTM based decoder as the ”generator”,
in charge of taking into account the estimated target locations and the dynamic feature to generate the future trajectories, and a discriminator to force the
generator to produce more realistic predictions.

B. Overall Model

When vehicles drive through a traffic scenario, they usu-
ally aim to reach partial goals, depending on their predefined
navigation route and scene context (both physical and social),
until they finally arrive at their final destination. Formally,
given a certain goal, vehicles must face different traffic
rules and other agents along their way to reach their final
destination. Regarding this, our model takes computes both
the social context and acceptable target points for the corre-
sponding agent given its past trajectory and then generates
plausible trajectories towards the estimated goals. Our model
consists of three main blocks:

• Target Points Extractor: Combines HDMap information
and dynamic features of the target agent (speed and
orientation) to generate acceptable target points in the
driveable area.

• Attention module: Computes the agent’s dynamic fea-
tures recursively by means a LSTM unit and uses a
Multi-Head Self Attention [9], [4] module to capture
complex social interactions among agents.

• GAN module: Given the target points and highlighted
social features, this module generates plausible and
realistic trajectories using a LSTM based decoder, which
represents the generator. Discriminator is applied to
enhance the performance of the generator by forcing
it to compute more realistic predictions.

Fig. 2 illustrates an overview of our model. Next, we
describe the different blocks of our model.

1) Target points extraction: In order to compute accept-
able destination, also referred as target points, and inte-
grate them into the model as a prior, we make use of the
HDMap information around the target agent and a simple yet
powerful method proposed by [24] to compute the velocity
and orientation of the target agent in the last observation
frame. First, we calculate the driveable area around the
vehicle considering a hand-defined d threshold. Then, we
consider the dynamic features of the target agent in the last
observation frame tobs to compute acceptable target points
in local coordinates. After estimating these variables, given

the driveable area around the target agent, we randomly L
target points considering a constant velocity model during
the prediction horizon tpred and the estimated orientation,
assuming non-holonomic constraints which are inherent of
standard road vehicles, that is, the car has three degrees of
freedom, its position in two axes and its orientation, and must
follow a smooth trajectory in a short-mid term prediction. For
further details, we refer the reader to [10].

2) Attention module: Our model takes as social input
the past n observations in map (global) coordinates for
each agent in the scene, encoding these trajectories as a
preliminary stage before feeding a Multi-Head Self-Attention
(MHSA) [23] module that computes the social context of the
scene, as observed in Fig. 2. The past trajectory of an agent
is transformed to relative (local coordinates) displacement
vectors

(
∆xt

i ,∆yt
i
)

and embedded into a higher dimensional
vector with a Multi-Layer Perceptron (MLP), which serves as
input of the LSTM unit, dynamic feature extractor to capture
the speed and direction of the corresponding agent. Then,
the hidden state of the LSTM (hME ) is used by the MHSA
module that learns complex social interactions while being
invariant to their number and ordering, avoiding a fixed size
(Nmax agents) list which would be sensitive to small variants
in the agent’s positions. In this context, each agent of the
scene should pay attention to specific features from the most
relevant agents around it. The Multi-Head Self-Attention
module consists of several heads that given the encoded
trajectories produces feature vectors that encode all pairwise
relations among agent’s information. Implementation details
are specified in Section IV.

3) GAN module: As stated in Section II, to capture
the stochastic nature of motion prediction, state-of-the-art
methods leverage the power of generative models, such as
Variational Autoencoders (VAEs) and Generative Adversarial
Networks (GANs). In our work we use an adversarial frame-
work in order to train our trajectory generator, responsible
for generating physically and realistic feasible trajectories.
In a GAN, the Generator (which after being trained will be
the inference network) and Discriminator networks compete



in a two-player min-max game [13], as observed in Eq. 1.
While the generator aims at producing feasible trajectories,
the discriminator learns to differentiate between fake and real
samples, in other words, groundtruth (which are feasible by
definition) and inferred trajectories, in such a way the tasks
of the discriminator is to enhance the performance of the
generator by forcing it to compute more realistic predictions,
more and more similar to the groundtruth trajectory. As a
result, the generator should be able to produce outputs which
the discriminator cannot discriminate clearly, indicating that
the output is realistic.

min
Gen

max
Dis

V (Dis,Gen) = EX∼pdata(X)[logDis(X ,Y )]

+Ez∼pz(z)[log(1−Dis(X ,Gen(X ,z)))], (1)

In the present case, the generator, also identified as
the routing module, is represented by a decoder LSTM
(LST Mgen) and the discriminator by a classifier LSTM
(LST Mdis) so as to estimate the temporally dependent future
states. Similar to the conditional GAN proposed by [5], the
input to our generator is a concatenation of a white noise
vector z sampled from a multivariate normal distribution,
being the physical context (goal points in relative coordinates
in the last observation frame, Ctobs

Ph(i)) and social context

(interactions among agents, C1:tobs
So(i) ) its conditions. Then, the

generated future trajectory for a particular agent is modelled
as Eq. 2:

Ŷ
tobs:tpred
i = LST Mgen

(
Ctobs

Ph(i);C
1:tobs
So(i) ;z

)
(2)

On the other hand, the input of the discriminator is a ran-
domly chosen trajectory sample from the either predicted fu-
ture trajectory or groundtruth for the corresponding agent up
to t = tobs+ tpred frame, i.e. T

tobs:tpred
i ∼ p(Ŷ

tobs:tpred
i ,Y

tobs:tpred
i ).

L̂
tobs:tpred
i = LST Mdis(T

tobs:tpred
i ) (3)

Then, the discriminator returns a label L̂
tobs:tpred
i for the cho-

sen trajectory indicating whether the trajectory is groundtruth
(real) Y

tobs:tpred
i or predicted (fake) Ŷ

tobs:tpred
i , being the labels

0 and 1 for fake and real trajectories respectively. Eq. 3
summarizes the discriminator working principles.

4) Losses: To train our model, we use the following
losses:

W ∗ = argmin
W

Ei,τ [λganLGAN

(
L̂

tobs:tpred
i ,L

tobs:tpred
i

)
+

λadeLL2(Ŷ
tobs:tpred
i ,Y

tobs:tpred
i )+

λ f deLL2(Ŷ
tobs+tpred
i ,Y

tobs+tpred
i )], (4)

where W is the collection of the weights of all networks
used in our model and the different λ represent the corre-
sponding regularizers between these losses. As stated in Eq.
1, LGAN represents the min-max game where the generator
tries to minimize the function while the discriminator tries
to maximize it. ADE loss function is commonly used to

compute the average error between the predicted trajectories
and the corresponding groundtruth. Moreover, we add FDE
loss function to explicitly optimize the distribution towards
the final real point.

IV. EXPERIMENTAL RESULTS

A. Dataset

We evaluate our work on the well-established and public
available Argoverse Motion Forecasting dataset [1], includ-
ing the training, validation and testing subsets from its
official website [25]. It consists of 205942 training samples,
39472 validation samples and 78143 samples. Each sample
in the Argoverse Dataset has a length of 5 seconds, with an
observation window of 2 seconds and a prediction window of
3 seconds, including the corresponding labels of the agents
(AGENT, as the target agent, AV, the vehicle that captures
the scene and OTHER, representing the remaining relevant
obstacles) and a global map from the cities of Pittsburgh
and Miami. The sampling frequency is 10Hz. The main goal
here is to predict the 3s future position of the target agent
in the scene, which is supposed to be the vehicle that faces
the most challenging traffic scenarios.

B. Metrics

Previous works [19], [4], [5] report the minimum Average
Displacement Error (minADEK), which averages the L2
distances between the ground truth and predicted output
across all timesteps and minimum Final Displacement error
(FDEK), which computes the L2 distance between the final
points of the ground-truth and the predicted final position,
taking the best K trajectory sample of each agent compared
to the ground truth. In the present work, we use K = 1
(unimodal case).

C. Implementation details

All local test were conducted in a PC desktop (AMD
Ryzen 9 5900X, 32GB RAM with CUDA-based NVIDIA
GeForce RTX 3090 24GB VRAM, Ubuntu 18.04).

We design our dataloader to sample in each batch a 30/70
proportion of straight and curved trajectories (regarding the
target agent’s whole trajectory). We classify a trajectory as
straight or curve estimating a first degree trajectory by means
the RANSAC algorithm with the highest number of inliers
(tolerance t set to 2m, max trials=30, min samples=60% total
observations). Then, if the actual trajectory presents 20%
or more consecutive points further than t with respect to
the closest point of the fitted trajectory, the whole sequence
is labelled as curve. We do this to focus in the training
process in non-linear prediction, which represents one the
key challenges in vehicle motion prediction.

Regarding the ablation study, we train the different models
for 150 epochs using Adam optimizer with learning rate
0.001 and default parameters, linear LR Scheduler with
factor 0.5 decay on plateaus (5k iterations) and batch size
64. The loss function is weighted by setting λgan=1.4, λade=1
and λ f de=1.5, giving more importance to the adversarial loss



and the final displacement error. Similar to [5], the LSTM
encoder (attention block) encodes trajectories using a single
layer MLP with an embedding dimension of 16. We set all
LSTM units to have 32 hidden dimensions. The number
of target points is set also to 32 in order to compute the
physical context. Moreover, in order to calculate these target
points we consider the same prediction horizon tpred = 3s to
estimate the distance travelled assuming a constant velocity
model. To make our model more robust to scene orientation,
we augment the training data adding some white noise
(µ = 0,σ = 0.25, [m]) to the observation data, rotating the
scene and also dropping and replacing (with their last frame)
some observations of the past trajectory in order to make the
trained model general enough so as to perform well on the
unseen traffic scenarios in the split test which different scene
geometries such as left/right turning or emergency braking.

D. Model results

In this section, we perform an ablation study and compare
our method’s performance against state-of-the-art results on
the Argoverse Motion Forecasting benchmark (split test). Ad-
ditionally, we conduct a statistical analysis on the Argoverse
validation set for the ADE and FDE metrics, distinguishing
the performance between straight and curved trajectories.

TABLE I
ABLATION STUDY OF OUR UNIMODAL PIPELINE, AND COMPARISON

WITH OTHER RELEVANT METHODS ON ARGOVERSE. WE CAN SEE THE

IMPROVEMENT USING TARGET POINTS (TP) AND CLASS BALANCE (CB)

Model ADE (k=1) ↓ FDE (k=1) ↓
[m] [m]

Constant Velocity [1] 3.53 7.89
Argoverse Baseline (NN) [1] 3.45 7.88
Argoverse Baseline (LSTM) [1] 2.96 6.81
SGAN [26] 3.61 5.39
TPNet [27] 2.33 5.29
TPNet-map [27] 2.33 4.71
Jean (1st) [1], [4] 1.74 4.24
Ours Baseline (*) 1.98 4.47
Ours + TP 1.78 4.13
Ours + CB 1.82 4.09
Ours + TP + CB 1.67 3.82

Table I illustrates the comparison with some Argoverse
baseline methods. Our baseline (*) is represented by the
system pipeline illustrated in Fig. 2, that is, LSTM based
GAN with Multi-Head Self-Attention, without target points
extractor. We conduct an ablation study to observe the influ-
ence of incorporating target points and class balance to our
baseline. As expected, by explicitly defining the locations an
agent is likely to be at a fixed prediction horizon for a given
input trajectory and scene geometry, we are able to improve
our baseline. Additionally, since nonlinear trajectories are
more challenging than standard straight trajectories, we also
observe how enforcing the class balance (straight, curve)
during training is able to improve performance.

On the other hand, we analyze our performance on the
Argoverse Validation Dataset, we use 31000 samples: 23012
straight and 7988 curved trajectories. We show in Figure 3
the boxplots for the ADE and FDE metrics. As stated before,

Fig. 3. Statistical results on the Argoverse Validation Dataset. We show
the boxplots for ADE and FDE metrics. We distinguish between straight
and curved trajectories. We highlight the median (Q2) in each boxplot.

our method, as most methods, struggles with curved trajec-
tories, the overall ADE and FDE is ”always” better for the
straight trajectory cases. The median provides a robust esti-
mator of our trajectories error. Note that we detected multiple
outliers in our analysis, these are due to the unimodal nature
of the predicted trajectories that makes difficult for the model
to consider multiple possible hypotheses (multimodal). Fig.
4 illustrates some qualitative results, all of them considering
unimodal prediction towards the precomputed target points,
meeting the physical and social constraints in the scenes. It
can be clearly appreciated that a naive CTRV (Constant Turn
Rate Velocity) could not generalize in these situations, where
the vehicle can describe a curved future trajectory given a
predominant straight input trajectory and viceversa.

V. CONCLUSIONS
Forecasting the future trajectories of surrounding actors

in the scene is mandatory to achieve a safe planning, and
thus, a crucial part of the Autonomous Driving stack. In
this work we explore a LSTM Multi-Head Self Attention
GANs for vehicle motion prediction using the Argoverse
Motion Forecasting Benchmark 1.1. Our model considers
both the physical and social context of the scene to predict
the most plausible trajectory, and achieves competitive results
in comparison to other state-of-the-art methods regarding the
case of unimodal prediction. In future works we plan to
extend our model by incorporating stochastic multimodality
and enriched attention over the physical context, specially
focusing on the vector features of HDMap, implement an
enhanced target-conditioned decoder to produce more fea-
sible and realistic trajectories and run our model in the
recently released Argoverse Motion Forecasting Benchmark
2.0, which allows for Multi-Agent evaluation.
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Marcos Conde is with the Computer Vision Lab, Univer-
sity of Würzburg, supported by the Humboldt Foundation.



Fig. 4. Qualitative Results using our best model (including target points extraction and class balance). The legend is as follows: our vehicle (ego), the
target agent, and other agents. We can also see the real trajectory, the prediction and potential goal-points. Markers are current positions.
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for autonomous driving applications,” in Workshop of Physical Agents,
pp. 257–270, Springer, 2018.
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