
AD PerDevKit: An Autonomous Driving Perception Development Kit
using CARLA simulator and ROS

Javier de la Peña1, Luis M. Bergasa1, Miguel Antunes1, Felipe Arango1,
Carlos Gómez-Huélamo1, Elena López-Guillén1

Abstract— Every now and then a new dataset appears that
aims to help training computer vision models for autonomous
vehicles (AVs), being KITTI [1] the most famous, but others like
Waymo [2] or nuScenes [3] can be found that try to innovate
by adding more sensors, giving more data about the ego-vehicle
surroundings or offering new scenarios. These approaches tend
to produce a high quality dataset, but at the cost of time and
money. The key difficulty is to create datasets with enough data
to generalize multiple road scenarios and hazard use-cases in
the training process of perception models for AVs.

To address this concern, we propose AD PerDevKit, a percep-
tion development kit for autonomous driving based on CARLA
simulator [4] able to generate an infinite set of annotated data
referred to the ego-vehicle by recording virtual car sensors
(camera, LiDAR, Radar) in virtual environments. Our ground-
truth generator provides real-time information of the objects
surrounding the vehicle that are visible for each sensor by
publishing them on a ROS [5] topic. In addition, a dataset
generated with this tool is also presented for some specific
challenging scenarios and an evaluation of its contribution in
the improvement of 2D object detection methods on real data
is included.

The code of our tool and its database is available
in the following git repository: https://github.com/
Javier-DlaP/ad_perdevkit.

keywords: autonomous vehicles, dataset, simulation, ROS,
CARLA.

I. INTRODUCTION

In recent years, thanks to improvements in sensors, com-
putational processing, Deep Learning (DL), and communi-
cation techniques, we are in a race to get the first fully au-
tonomous vehicle in the market. Automotive and technology
companies such as ArgoAI, Audi, Baidu, Cruise, Mercedes-
Benz, Tesla, Uber, Waymo and others are investing huge
amounts of money in the development of these technologies.

To achieve autonomous driving systems (ADS), a good
knowledge of the surroundings is required. In order to build
a robust driving system, multiple sensors are used to provide
information to the vehicle, such as cameras, LiDAR or Radar.
ADS/ADAS systems require a good understanding of the

This work has been funded in part from the Spanish MICINN/FEDER
through the Artificial Intelligence based modular Architecture Implementa-
tion and Validation for Autonomous Driving (AIVATAR) project (PID2021-
126623OB-I00) and from the RoboCity2030-DIH-CM project (P2018/NMT-
4331), funded by Programas de actividades I+D (CAM), cofunded by EU
Structural Funds and Scholarship for Introduction to Research activity by
University of Alcalá

1Javier de la Peña, Luis M. Bergasa, Miguel Antunes, Felipe
Arango, Carlos Gómez-Huélamo, Elena López-Guillén are with
the Electronics Department, University of Alcalá (UAH), Spain.
j.pena@edu.uah.es, luism.bergasa@uah.es, miguel.antunes@edu.uah.es,
juanfelipe.arango@uah.es, carlos.gomezh@uah.es, elena.lopezg@uah.es

surroundings in order to work properly, so it is necessary to
add several sensors along the vehicle that allow to obtain as
much information as possible.

Different multi-sensors techniques have been reported in
the design of perception systems on-board a vehicle. In last
years, DL models, which require large amounts of data in
their learning process, have gained weight.

Fig. 1: AD PerDevKit pipeline.

The use of perceptual datasets consisting of real sensor
data for training DL models is widespread. With the appear-
ance of KITTI in 2012, this dataset began to be standardized
for model training and evaluation, since it was the pioneer
in the integration of multiple sensors and multiple evaluation
systems within the same dataset. This breakthrough led to the
creation of other datasets such as Argoverse [6], Lyft L5 [7],
Waymo [2] or nuScenes [3] among others.

DL models, usually trained in a supervised way, need
to use huge datasets with multiple scenarios and hazard
situations to generalize traffic use cases that are found on
the roads. These data need to be manually labeled, which
is a time consuming and expensive activity. To alleviate this
hard task, we propose to use a development kit using CARLA
able to generate synthetic annotated data recorded by virtual
sensors in virtual scenarios in simulation time using ROS [5].
This process is outlined in Fig. 1. With this development kit,
almost unlimited data samples can be created offering the
possibility to generate hazard use cases in a safety way and
at a low cost.

In addition, a dataset with different challenging scenarios
is provided as an example of what can be achieved with this
tool. Furthermore, this dataset can be used in combination
with other real data to increase the accuracy of the perception
models to be built. As a concept proof of its potential we
include an evaluation of the improvements obtained with a
popular 2D object detection method.

https://github.com/Javier-DlaP/ad_perdevkit
https://github.com/Javier-DlaP/ad_perdevkit


TABLE I: Comparison of cited datasets.

Dataset Type of data Cities Annotated frames Ground-truth 360º Camera LiDAR Radar Night/Rain GT generation tool
KITTI Real data 1 15k ✗ ✓ ✓ ✗ ✗ ✗
nuScenes Real data 2 40k ✓ ✓ ✓ ✓ ✓ ✗
AIODrive Synthetic data 8 100k ✓ ✓ ✓ ✓ ✓ ✗
AD DevKit Synthetic data 5 21k ✓ ✓ ✓ ✓ ✓ ✓

II. RELATED WORK

In recent years, many datasets have been created to
train and evaluate motion detection, tracking and forecasting
models. Among all the autonomous driving datasets used,
KITTI and nuScenes stand out as references in the creation
of datasets with real data. On the other hand, AIODrive [8] is
one of the main exponents of the synthetic data sets generated
in the CARLA simulator.

Table I shows the main characteristics of all the above-
mentioned datasets in order to understand more easily the
differences among them. As we can see, our proposal is the
only one that offers a free GT generation tool.

We would like highlight that the role of our dataset is not
to replay real datasets. Instead, it can be used in combination
with real data to pre-train detectors to improve detection
performance on real data, as it will be shown in the dataset
section.

A. KITTI

In 2012, the Karlsruhe Institute of Technology (KIT)
provided KITTI, one of the first datasets specifically for
autonomous driving, which offered front camera data in
addition to point cloud data, with its corresponding ground-
truth. As ground-truth, KITTI provides 2D and 3D annotated
bounding boxes for use in detection and tracking tasks,
in addition to location information for SLAM and visual
odometry tasks. All this data was collected by a vehicle
with 2 stereo cameras, 1 Velodyne HDL-64E LiDAR and
a location system based on GPS, GNSS, IMU and RTK.

B. nuScenes

In 2019, nuTonomy company presented nuScenes, a
dataset with a large number of different scenes. This dataset
makes use of a vehicle with a 360-degree vision system
using 6 cameras with 1600x900 resolution, a LiDAR of
32 beams at 20 Hz, a 5 Radar system with a maximum
distance of 250 meters and a localization system composed
of GPS, IMU, AHRS and an RTK positioning system. This
dataset not only offers a wide variety of sensors but also
provides the necessary ground-truth for detection, tracking,
semantic segmentation and point cloud segmentation tasks,
all annotated using 23 different categories. All this makes it
one of the most complete dataset available today.

C. AIODrive

While the previous two datasets were performed in real-
world environments, using synthetic data can be useful, as
they allow the generation of data in a simpler way and with
more complex and dangerous scenarios. Within synthetic
datasets, AIODrive is the main one. This dataset built on
CARLA uses 5 cameras to obtain a 360 degree view of

the environment, 4 Radar, 3 Lidar and an IMU/GPS. The
dataset is built with a large amount of data in a simple
way, since all the necessary ground-truth is autonomously
generated avoiding the costly manual labeling process.

The AIODrive dataset is open-source, but the tool used
to create it has not been published yet. Because of this and
the lack of documentation provided by the developers, it is
difficult to manage correctly this dataset. On top of that, it
does not solve the calculation of the visibility of objects from
the vehicle, so it is not possible to distinguish whether the
objects in the environment are visible from the vehicle itself
or not.

D. Domain gap between synthetic and real data

Though synthetic data generation can be used to create a
comprehensive dataset, one might argue that the domain gap
between synthetic and real data is a weakness [8]. We believe
that the usefulness of synthetic datasets is firmly predicated
on many prior work [8],[9],[10],[11] that have shown, it can
be used to enhance perception performance on real data when
synthetic data is correctly used. In the same way that the
success of prior works with synthetic data, we believe that
the usefulness of our dataset in combination with real data
is also undoubted, as will be proved in section VI.

III. CARLA AUTONOMOUS DRIVING SIMULATOR

The development of an autonomous vehicle, entails an
exhaustive testing process in multiple simulated scenarios
populated with vehicles and people to resemble the real
situations that the vehicle may encounter, as a previous step
for its validation in the real world. For this purpose, in recent
years, several simulators have been designed. Among them
we find Sim4CV [12] or Nvidia Drive [13]. These simulators
are not open-source, so research community does not have
free access to them, hindering a standard of comparison in
the creation of validation scenarios, the modelling of virtual
sensors or the evaluation of different weather conditions.
CARLA, is an open-source project that offers a large number
of facilities in the development of AVs. This is why we have
based our development kit in this simulator, contributing to
generate an standard in the AD validation process, despite of
the fact that CARLA uses sensor models that are simplified
to reduce its load in real time.

This simulator provides virtual environments to develop
and validate AD techniques, by using the API programming
in Python and C++. CARLA is based on the Unreal Engine
[14] to run the world, and uses the OpenDRIVE [15] standard
for the definition of roads and the environment.

It uses a client-server model in its architecture, so the
server is responsible for the entire simulation: rendering
sensors, calculating physics, updating the world, etc. On the



TABLE II: Format of the created ROS message.

Type Name Description
string type Object type (car, pedestrian, truck, etc)
uint32 object id Id assign to an object
float32 alpha Observation angle of object
vision msgs/BoundingBox2D bounding box 2D Object 2D bounding box
geometry msgs/Point position Center of the 3D object
geometry msgs/Vector3 dimensions Object dimensions (l, w, h)
float32 rotation z Object rotation along z axis
geometry msgs/Vector3 velocity Velocity of the object related to the ego vehicle
float32 truncated Float from 0 (non-truncated) to 1 (truncated), where truncated refers

to the object leaving image boundaries
uint8 occluded Integer (0,1,2,3) indicating occlusion state: 0 = fully visible, 1 = partly

occluded, 2 = largely occluded, 3 = not visible to the camera

other hand, the client controls the logic of the actors in the
scene and changes the world options. The communication to
the server is done through the API provided by CARLA,
but in our case we use the CARLA-ROS bridge for the
communication. With this configuration, it is possible to run
our tool without the need to run CARLA simultaneously,
since only ROS is needed.

IV. GROUND-TRUTH GENERATION TOOL

The main contribution of our AD PerDevKit is the cre-
ation of a ground-truth generation tool for the surrounding
obstacles of the ego-vehicle using CARLA and ROS. For
its implementation, as explained in section III, the CARLA-
ROS brige is used so that the simultaneous execution of
CARLA and this tool is not necessary, since the execution of
both programs can be very demanding due to the simulator
requirements. This way it is possible to record a rosbag (a
file with all the ROS messages) with the GT information, so
that only an area around the ego-vehicle is analyzed and not
the whole obstacles in the CARLA runtime.

The messages created by CARLA contain the information
of the different objects of the environment in relation to
the map on which it is being used. However, to be used
independently, the obstacles must be referenced to the ego-
vehicle. Therefore, it is necessary to perform the different
transformations to go from a coordinate system based on the
map to a coordinate system based on the ego-vehicle.

A. Method for obtaining 2D bounding boxes

While the CARLA-ROS bridge gives access to the 3D
bounding boxes of the objects in the environment, it does
not provide the projected 2D bounding boxes of these 3D
objects in the camera.

Fig. 2: Geometry transformation from world to camera.

A conversion from the world coordinates to the image ones
is necessary to transform the eight vertices of a 3D bounding

box into the vertices of a 2D bounding box. For this purpose,
it is necessary to apply some geometry transformations as
shown in Fig. 2.

Using homogeneous coordinates, the correspondence be-
tween a 3D point in the World Coordinate System (WCS)
and its projected pixel in the Image Coordinate System at
origin (ICSO) is calculated applying the following equation:wuwv

w

 = M3x4


Xw

Yw

Zw

1


where M(3x4) = MintMext is the camera projection matrix,
formed by the product of intrinsic matrix and extrinsic
matrix, defined as follow:

Mint =

f/dx 0 u0

0 f/dy v0
0 0 1


Mext =

[
R3x3 T3x1

0 1

]
being f focal distance, (dx, dy) physical size of the pixel,

(u0, v0) centre of the image in pixels, T3x1 translation matrix
and R3x3 rotation matrix from the world (WCS) to the
camera (CCS).

B. Calculation of object visibility

One main issue for the GT calculation is that CARLA
always render all the objects, even when they are not visible
by the camera, LiDAR or Radar, which is a problem for
any training process. There are many studies about ray
tracing that solve this issue. These techniques [16] [17]
are computationally very expensive so it is very difficult to
implement them in real-time.

We propose a method for the calculation of visibility in
CARLA and ROS using directly the point cloud calculated
by CARLA. A vehicle will be considered as visible, as long
as a point of the LiDAR point cloud is found inside an object,
in the same way as it is done in the nuScenes dataset [3].
The steps to be performed are the following:

1) Remove objects furthest than the maximum LiDAR
distance.

2) Deletion of the points of the point cloud with the height
higher or lower than the objects in the surroundings.



3) Elimination of points outside the area in which the
objects are located, taking into account all possible
rotations.

4) Selection of the visible objects having at least one point
in the point cloud taking into account the rotation of
the different objects.

In order to obtain a much simplified and reduced GT to
work with, the tool has been designed with sensor synchro-
nization as the basis. In this way, GT does not have to be
calculated every time data is obtained from a sensor, or in
certain timestamps in which data is available. Because of
this, it is necessary to activate the CARLA synchronization
option for the correct functioning of the tool.

C. Data storage method

After having obtained the GT from the objects in the
environment, data must be saved. Two options are offered:
1) Using ROS in simulation time. 2) Saving the data in a
CSV file for later use.

For the first option, two ROS messages are created, which
are composed of other standard ROS messages. The first
message saves a list of the second message built, while
the second message includes the most important information
of each object as shown in Table II. The saved data of
the objects are those necessary to perform the tasks of 2D
detection, 3D detection and object tracking.

For the second option, a CSV file is provided in which
the same information as in the previously described ROS
messages is stored. As the data has a different format, and
in order not to generate confusion, headers are added to
simplify its use.

Therefore, this tool defines different object types for
GT generation (pedestrian, car, cyclist), providing two use
modes. All the settings to follow for a particular architecture
are performed on a configuration file within the ROS node.

V. FAULTS FOUND IN CARLA SIMULATOR

During the development of our PerDevKit, multiple prob-
lems have been encountered due to diverse issues with
CARLA, as this simulator is open-source and is continuously
evolving with the contributions of the research community.
We present issues detected using version 0.9.8 of the simu-
lator.

Fig. 3: Different classes of objects in BEV.

One of the problems observed when using the CARLA-
ROS bridge, is the classes presented in ROS. While in the

ROS message, up to 12 different types can be adopted, it has
been found that even using CARLA’s own object generation
functions, only two of them are displayed: car and pedestrian.
The solution adopted for the AD PerDevKit consists in the
analysis of the width of the objects to distinguish more types
of vehicles. This strategy works because the 3D boxes of
motorcycles/bicycles are narrower than those of cars, and
trucks have wider 3D boxes than cars. Fig. 3 shows the
different classes detected by our tool, with pedestrians in
green, motorcycles/bicycles in blue and cars/trucks in red.

Obtaining data from the sensors simulated by CARLA, is
one way to understand the environment. Studying this data,
several errors have been found in its simulation.

Fig. 4: Error in point clouds given by CARLA.

A good part of the maps provided by CARLA include
buildings, so the LiDAR point cloud from the ego-vehicle
should represent these static objects in the environment.
However, certain buildings do not have any hit-boxes with
respect to the LiDAR beams. Such issue not only worsens
the given point clouds but also can produce failures in the
vision system as seen in Fig. 4. In this particular case a
vehicle is detected behind the building, because the point
cloud does not collide with the building, it pass through it
and the vehicle bounding box contains at least one of the
LiDAR points, therefore the object is considered as visible.
This failure is not a problem of the malfunction of CARLA,
but an error in the creation of some of the buildings on the
maps.

Finally, one of the most repeated flaws throughout the
simulator is the definition of parked cars on the maps. While
all spawned vehicles within the simulator are defined as
different foreground objects, parked vehicles are defined as
static background elements in the map, and for this reason
they are not saved by the CARLA-ROS bridge. This would
lead to situations where a model that is trained on CARLA
data, detects a vehicle when it is visible to the sensor, but
does not appear in the ground-truth. This object will be
considered as a false positive, which negatively impact the
model to be trained. That said, we are faced with a bad design
decision, in which the position of parked vehicles is not
allowed to be known since they are included as background
in each map, so it is not really a bug in the simulator.

For all above reasons, it is recommendable to avoid areas
that produce anomalous images, such as buildings without
LiDAR hit-boxes or roads with parked vehicles defined as
background in the maps, to provide correct visibility for



Fig. 5: Camera images and LiDAR point clouds with 2D and 3D bounding boxes.

all GT objects. Another alternative is the creation of maps
from scratch with tools that allow editing under OpenDrive
standard, such as: VectorZero’s RoadRunner o VIRES ROD.

VI. AD PERDEVKIT DATASET

AD PerDevKit can be used for the development of control
and decision-making modules involved in the design of AVs.
In this case, perception layer can be substituted by the real-
time GT provided by our tool in order to focus the study in
the corresponding module, removing perception uncertainty.
However, this paper is focused in the use of PerDevKit to
help the training process of DL perception models. For this
goal, virtual sensors data and their corresponding objects
detection GT, recorded while a car is moving in virtual sce-
narios, are saved in a file in a synchronized way generating
our dataset.

TABLE III: Dataset information

Town Weather Challenging scenarios Frames Objects
per frames

03 Day Intersection and roundabout 1708 29.11
Night 1822 45.89

05 Day Crowded intersections 3249 19.53
Highway 2078 9.58

06 Day Entrance to highway 1413 8.21

Crowded highway 1673 16.1
Rain 1487 15.86

07 Day Small village 2738 10.89
Rain 2560 9.78

10HD Day Crowded town 1587 77.9
Night 1409 76.81

To train robust perception systems for challenging driving
scenarios it is necessary to include a large number of out-
of-distribution data in the dataset for training and testing.

Collecting such data in the real world is difficult be-
cause they rarely happen and can be dangerous since they
contemplate hazard situations where accidents can happen.
We leverage our kit to generate such rare data through
11 different scenes in different weather conditions, each
containing between 1400 and 3200 frames with full set of
annotations.

Data were recorded in 5 towns included in the CARLA
simulator running the PerDevKit. The main characteristic

of our dataset are described in Table III. As we can see
it includes challenging crowded scenarios next to other daily
traffic ones. Crowded scenarios have been included to train
rare situations where interaction among agents are complex
and collision may happen. We also provide other rare driving
data as adverse weather and lighting (night, rainy, etc.). Fig
5 shows some examples of our driving scenes.

TABLE IV: Sensor data in the AD PerDevKit dataset.

Sensor Brief Details
Camera Front stereo camera at 20Hz, with a FoV of 85º and

a resolution of 1280x720 generating RGB images.
LiDAR 360º of visibility, a maximum range of 120m, 64

beams at 20Hz and a vertical FoV of 2º to -24.9º,
generating 1,300,000 points per second.

Radar Frontal radar at 20Hz with a horizontal FoV of 90º,
vertical FoV of 18º and a maximum range of 150m,
generating 9,000 points per second.

For each agent (vehicle, pedestrian) we set a random
behaviour and target destination to increase diversity and
generate varied trajectories. After environment setup a ve-
hicle is randomly selected to be our ego-vehicle and it is
equipped to our sensor suite for data recording.

Fig. 6: Sensors setup and coordinate systems.

Our multi-sensor system consist of a front camera, a 360º
LiDAR on the top of the vehicle and a front Radar. The
characteristics of each sensor are explained in more detail in
Table IV, and can be modified through the use of CARLA.



Each of the sensors uses a different coordinate axis as shown
in Fig 6.

Our dataset is a useful tool for training DL based models,
since it includes raw sensors data and object detection GT
for each sensor through 2D/3D bounding boxes, temporal
information of the objects as well as their visibility. Some
scenes with their 2D and 3D bounding boxes are shown in
Fig. 5. This dataset is freely available for researchers.

As a concept proof of the potential of our dataset we
include an evaluation of the improvements obtained in a
popular 2D detection method when we combine synthetic
data with real data. In concrete, we will use YOLOv5 [18]
in its versions ”L” and ”S”, because this models achieves the
best performance when compared to the rest of its versions.

TABLE V: Training results on CARLA and KITTI from
scratch

Model Train Test P R mAP

Yolov5S

Kitti 100%+
Carla

Kitti 0.884 0.853 0.925
Carla 0.669 0.879 0.776

Kitti 50%+
Carla

Kitti 0.925 0.873 0.901
Carla 0.699 0.796 0.811

Kitti 25%+
Carla

Kitti 0.831 0.755 0.841
Carla 0.675 0.804 0.724

Yolov5L

Kitti 100%+
Carla

Kitti 0.933 0.874 0.949
Carla 0.687 0.767 0.772

Kitti 50%+
Carla

Kitti 0.910 0.841 0.930
Carla 0.657 0.775 0.753

Kitti 25%+
Carla

Kitti 0.873 0.794 0.889
Carla 0.652 0.769 0.723

As training set we have chosen 3 different options, in
which we have trained with a different percentage of this
dataset combined with the KITTI dataset. As performance
metric we use Precision (P), Recall (R) and mean Average
Precision (mAP).

As we can see, performance get worse when % of real
data decreases in the training. Real world performance is
improved when the training is carried out with synthetic data.
As baseline is considered the training with only 25% KITTI.
For more information about this study we remit the readers
to our publication in [19].

VII. CONCLUSIONS AND FUTURE WORKS

This paper presents a tool able to generate an infinite
set of sensors data next to its corresponding 2D/3D objects
detection GT using the CARLA simulator and ROS frame-
work. This information is very useful to train DL models
in a simple and cheap way in simulation, since it is not
necessary to have a vehicle with the latest technology sensors
to record data and manually annotate all the objects in
the environment. Besides, a dataset using this tool while
the vehicle is driving in some challenging scenarios has
been presented. The potential of our tool in real world
domain adaptation has been proved in a 2D object detection
evaluation with YOLO using combinations of CARLA and
KITTI data.

As future work we intend to generate more scenarios for
wide our dataset. Finally, it is worth noting that this work
is part of a larger project called AD DevKit, which plans

an holistic evaluation tool for complete autonomous driving
architectures in CARLA.

REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[2] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in
perception for autonomous driving: Waymo open dataset,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in CVPR, 2020.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[5] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan,
May 2009.

[6] M. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3d
tracking and forecasting with rich maps,” CoRR, vol. abs/1911.02620,
2019. [Online]. Available: http://arxiv.org/abs/1911.02620

[7] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari,
V. Iglovikov, and P. Ondruska, “One thousand and one hours:
Self-driving motion prediction dataset,” CoRR, vol. abs/2006.14480,
2020. [Online]. Available: https://arxiv.org/abs/2006.14480

[8] X. Weng, Y. Man, D. Cheng, J. Park, M. O’toole, and K. Kitani,
“All-in-one drive: A large-scale comprehensive perception dataset with
high-density long-range point clouds,” 12 2020.

[9] B. Hurl, K. Czarnecki, and S. Waslander, “Precise synthetic image and
lidar (presil) dataset for autonomous vehicle perception,” in 2019 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 2522–2529.

[10] M. Maximov, K. Galim, and L. Leal-Taixé, “Focus on defocus:
bridging the synthetic to real domain gap for depth estimation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 1071–1080.

[11] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 3234–3243.

[12] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Ue4sim:
A photo-realistic simulator for computer vision applications,” CoRR,
vol. abs/1708.05869, 2017. [Online]. Available: http://arxiv.org/abs/
1708.05869

[13] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving cars,”
2016.

[14] Epic Games, “Unreal engine.” [Online]. Available: https://www.
unrealengine.com

[15] A. for Standarization of Automation and M. Systems, “Asam
opendrive®.” [Online]. Available: https://www.asam.net/standards/
detail/opendrive/

[16] J. Knodt, J. Bartusek, S.-H. Baek, and F. Heide, “Neural ray-tracing:
Learning surfaces and reflectance for relighting and view synthesis,”
2021.

[17] S. Koksbang and S. Hannestad, “Studying the precision of ray tracing
techniques with szekeres models,” Physical Review D, vol. 92, no. 2,
Jul 2015. [Online]. Available: http://dx.doi.org/10.1103/PhysRevD.92.
023532

[18] G. Jocher, “ultralytics/yolov5: v3.1 - Bug Fixes and Performance
Improvements,” https://github.com/ultralytics/yolov5, Oct. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.4154370

[19] M. Antunes, L. M. Bergasa, J. Araluce, R. Gutiérrez, J. F. Arango, and
M. Ocaña, “Including transfer learning and synthetic data in a training
process of a 2d object detector for autonomous driving,” Submitted to
ITSC 2022.

http://arxiv.org/abs/1911.02620
https://arxiv.org/abs/2006.14480
http://arxiv.org/abs/1708.05869
http://arxiv.org/abs/1708.05869
https://www.unrealengine.com
https://www.unrealengine.com
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
http://dx.doi.org/10.1103/PhysRevD.92.023532
http://dx.doi.org/10.1103/PhysRevD.92.023532
https://github.com/ultralytics/yolov5
https://doi.org/10.5281/zenodo.4154370

	INTRODUCTION
	RELATED WORK
	KITTI
	nuScenes
	AIODrive
	Domain gap between synthetic and real data

	CARLA AUTONOMOUS DRIVING SIMULATOR
	GROUND-TRUTH GENERATION TOOL
	Method for obtaining 2D bounding boxes
	Calculation of object visibility
	Data storage method

	FAULTS FOUND IN CARLA SIMULATOR
	AD PERDEVKIT DATASET
	CONCLUSIONS AND FUTURE WORKS
	References

