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Abstract— This paper presents a computer vision-based ap- vehicle detection at night, when textures are much more
proach to tracking surrounding vehicles and estimating their  difficult to obtain than during the day. In [8], Alcantarilla
trajectories, in order to detect potentially dangerous situations et al. presented a system that estimated the position of

Images are acquired using a camera mounted in the egovehicle. . . . .
Estimations of the distance, velocity and orientation of other vehicles in front of the egovehicle to lower the light beam

vehicles on the road are obtained by detecting their lights automatically. More recently, Fossagt al. [9] developed

and shadow. Because 3D information is not readily available a system to detect the position of the vehicles based on
in a mono-camera system, several sets of constraints and the estimated distance between the rear lights. This system
assumptions on the geometry of both road and vehicles are gomgnsirated good results in environments with many light

proposed and tested in this paper. Kalman filters are used It ked f hicl | than 50 t d
to track the detected vehicles. We also study the advantages sources. It worked for venicles closer than meters, an

of tracking the vehicles in road space (world coordinates), Used color data to filter and pair the lights.

or tracking the position of the lights and shadows on the In this paper, we investigate the feasibility of using the

image. The performance of the approaches is evaluated on video car lights and the shadow of the vehicles as measurements.

recorded in urban environment. Daytime Running Lamps (DRL) have been mandated in
. INTRODUCTION Sweden since the late 1970s. Many other countries in the

Vehicle detection and tracking has been the focus of %U are encouraging its use. In EU, from 2011, ECE R48

extensive number of works in recent years, either fro ugig#rieg§|;;cgnf§;nlnigx ESE) r?/?e:]iéloe rsfudl'stznzn d
cameras that are part of the road infrastructure or fro ps) ‘

cameras mounted in vehicles. Information about the sta eanada have been working towards the implementation of

of vehicles can be used for a wide variety of purposegImllar systems since the 90's [10].

ranging from Advanced Driver Asistance Systems (ADAS% thisrr?g 32;2:; :ﬁ‘ﬁgﬁﬁggﬁ? uﬁé (je?eilt‘.’olr:nggﬁnprodcest.sgg
to automatic video analysis and detection of potentiall Y '9 ! uring cayt

%vill be applicable to most road traffic around the world in

dangerous situations. i . .
Detecting and modeling vehicles is difficult because theljless than 5 years. Detection and tracking of car lights has

characteristics vary greatly from one vehicle to anomeﬁoirsn?nz)erZ?r:I((jzbIeang\r/\?r}:?)gr]neivgzmg?rsgngtg:ser;ﬁghlri"th:sesz
More importantly, vehicles are driven in uncontrolled envi P ' g

ronments, where lighting and background can change quick ave a well known geometry. Additionally, the appearance

and unpredictably. The appearance of shadows and occ —_:_'ggtsol')‘cfeilg]/gsg;hﬁlesagnzt;?; aclile\;i?ilbcéils i?1nt:i]: r(;a%r "
sions is also frequent. | y pap

Several works have been published on vehicle detecti(%fi{sijsr:”i?]aéf dt;]ret;:g?euc?dlggerf:; trg;ctgpéuussggj;:i;gcula
and tracking in the last decades [1], [2], [3]. In many cases, P y 9

the systems fuse image data with other sources, like LIDA ould lead to a crash. The images are obtained _from asingle
or RADAR, which provide more precise range data [4]. Barthront-mounted camera in 'the egovehicle. Two dlﬁgrent cues
and Franke [5] presented a stereo-camera system to det; & siarclhed ;or rlln dthe 'ngest'h front and rre]ar “g.htSF’. an;:l
and track the vehicles. The stereo vision allowed for 3Q.c W€€IS and snadow Underne car, as snown in +1g. L.

data to be readily used. The vehicle was tracked with anhIS process is described #ll. Estimated yaw rate and

Extended Kalman Filter. The system was demonstrated gdstance o the car rely on different geometrical model$ief t

work during daytime. In [6], a monocular system using arqoad and the vehicles, and are presentegl lih. Section IV

Unscented Kalman Filter to track vehicles was presenteg.escrlbes how .the lights, whegls apd shadovys under the car
re tracked using a Kalman filter in either imageroad

This work assumed a planar road surface. The same authdf ace(world coordinates). Experimental results are described
developed a system [7] that used the distance between o )- xp .
n § V. The paper closes with conclusions and future work.

lights of a vehicle in the image to estimate the distance t
the vehicle. II. IMAGE PROCESSING
Some researchers have used vehicle lights to detect apd Light detection system

track vehicles. Most of these works target the problem of . . .
g P Car lights have a very distinctable and stable appearance in

J. Nuevo, |. Parra and L.M. Bergasa are with the Departmentesfiien-  video sequences. They have a very well known geometry and
ics. University of Alcah. Alcal de Henares, Madrid, Spain. JOBgrg is  show a higher intensity value than their neightbouring Isixe
with Signals and Systems at Chalmers University of Technol@gyeborg, 0 fi briah . inthe i d usi
Sweden. j nuevo, parr a, ber gasa@epeca. uah. es, n a first step bright regions in the image are extracted using

j onas. sj oberg@hal ners. se. a binary adaptive threshold set to the 90% of the image mean



Carinitialization/ A. Flat-Earth method

Grayscale 1 Tracked (manual) This methods assumes that the ground is locally flat.
image 1 carlist ) We follow a similar approach to that in [8], where the
__________________ . — distance between the egovehicle and the detected velscles i
; / : \ : computed using monocular vision. The perspective camera
| Thresholding c!| Thresholding 5 model [11] used can be seen in Fig. 3. The origin of the
5 - ! vehicle coordinate system is located at the central point of
.§ ; l i %i l i the camera lens. The and y coordinates of the vehicle
o _ ; %: . i coordinate system are parallel to the image plane and the
o ! Blob detection . o, Blob detection .. .
0. ' £ ' Z axis is perpendicular to the plane formed by Keand
! LS ; Y axis. A vehicle at a look-ahead distanezefrom the
= ; §: ; camera will be projected into the image plane at vertical
; Front/Rear | G Wheels/Shadow | and horizontal coordinate@u,v) respectively. Vertical and
| !lohts detection ] E detection : horizontal mapping models will be carried out. The vertical
\\ / _____________ ' model considers flat road and uses the following parameters:
Data « z Look-ahead distance for planar ground (mm)
association o hcam Elevation of the camera above the ground (mm)
l « highe: Elevation of the vehicle rear lights (mm)
o higne: Elevation of the vehicle front lights (mm)
Update 9 . .
list of cars o B.ay Camera pitch angle relative (rad)
« 6, Incident angle of the precedent vehicle light in the
Fig. 1. System flow diagram. camera relative to the pitch axis (rad)

« (u,v): Horizontal and vertical image coordinates (pixels)
 (up,Vvo): Optical center vertical coordinate (pixels)
intensity value. Blobs of the brighter regions of the image a « f: Focal length (pixels)
then detected and their contour extracted. For every contou geyeral of these parameters are assumed to be known

circularity, perimeter and area are stored in a list alonh wi 5 fixed. Elevation of the vehicle lights is supposed to be
the wheels/shadow information. constant and equal for all car models, as is the elevation
B. Wheels/shadow detection system and pitch angle of the camera. The longitudinal axis of the
detected vehicle and egovehicle are assumed to be always

A common feature for all the cars in the video sequences . ) S
9 angential to the road, which also implies the absence of

is that they show a dark region under the car lights cor- . " )
responding to the wheels or the shadow under the car. / eed bumps_ or othgr irregularities on the rqad. An estima-
similar approach as in the previous section was followe '|,on of the distance is caIcuIaFed as fOHOWS'. to each scan
but the adaptive threshold is set to the 5% of the averag'ge atv, there corresponds a pitch angle relative to the local
intensity level for the image in order to detect the darker
areas surrounding the car lights.

Using geometry clues based on the previously estimated
position of the lights in the image, a new Region of Interest
(ROI) is defined for the dark contours detected. Every dark
region inside this ROI is labeled as wheel/shadow contour
and stored. This contours are merged using the prior knowl-
edge of the car geometry to get the main shadow under’
the lights, which should show a similar size as both lights
contour as shown in Fig. 2. Once we have detected the main
shadow, the front and rear wheels are searched for as darl
contours in known positions with respect to the lights and
main shadow.

IIl. DISTANCE AND ORIENTATION ESTIMATION USING
GEOMETRICAL INFORMATION

Estimating distances from images obtained with one cam-
era is difficult. Depth information is not readily available
as is the case of stereo camera pairs, and must then b
estimated based on a set of assumptions on the scene and the
sizes of the vehicles. This section describes several $etspy. 2. Detail of the merging of the dark regions under the Batected
assumptions, and discusses their strengths and weaknesdights are enclosured by the white rectangle.




or can not be distinguished from the shadow under the car.

In the latter case the shadow can also be used as reference.
I”'M As can be seen in Fig. 5, only the distaoeis needed, and

the distancez can be obtained from it.

Fig. 3. Car distance estimation using the car position of icdtd in the
image, assuming flat Earth.

d Fig. 5. Car orientation estimation using the position of fifgand shadow.
uf|tUo
-e— This method only requires a correct camera calibration
i ¢ ! and proper detection of the lights and shadow/wheels of the

< » vehicle, and its only assumption is that the elevatighs

z (or hjignts) Of the lights is constant and equal for all vehicles.
The shadow is dependent on the incident light and if it is
noticeably oblique, the detection of it could be imprecise.

Fig. 4. Geometry of the car distance correction consideriagzbntal
position of the vehicle.

C. Frontal-facing car method

tangential plane oB,. The angleg is given by Shadow and wheels are more difficult to locate properly
than car lights. Assuming that the car is facing the camera,
B = Gam—6, B = arctan(vo_v) (1) and that the distance between the lights is fixed and the
f same for all vehicles, we can obtain a rough estimate of
with the distanced just from the distancéu = u; — u; between
tan(,) = heam— hlight' ) the position of the Iights in the image. .
z When the vehicle is not facing frontal to the camera, which
From this, the planar look-ahead distance corresponding vdll be the case in curves, the uncertainty of the orientatio
Vv is obtained as and distance can be solved using the method in III-E or
obtained from the dynamic vehicle model in section IV.

Ncam— hIight

z= .
tan(Bcam— arctan( Yo ") )

©)

D. Orientation computation using lights position

, . . . ) , The estimation of the car orientation is carried out using
A distance estimatel is obtained by introducing the o same perspective camera model as above in section I11-A.
horlz_ontal coordmate of the image)( as shown in Fig. 4. 1o projection of the car lights into the image plangy
In this formulation, and ues; will determine the car orientation given that we
z- (U—Up) know their distance to the cagigy andzes) and that the
X= —f (4) distance between the lights is similar for most vehicles and

) ) ) ) ] ] known. The geometry of the problem can be seen in Fig. 6.
whereu is the horizontal image coordinatey is the optical

center horizontal coordinate anfl is the optical length.
Finally the distancel to the car is computed as an Euclidean
distanced = v/x2 + 22,

The flat-Earth assumption normally holds for cars that are
closer than 10-15 meters to the egovehicle, but fails atdong
distances or when the road is steep. The estimation error
grows linearly with errors in the values @figh; and heam,
but it is non-linear with the non-flatness of the ground.
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B. Shadow-lights method

The flat-Earth assumption can be avoided if a more
adequate reference to measure the lights elevation is khose
The points where the wheels contact the ground could be Fig. 6. Car orientation estimation using the lights position
used. The wheels are visible in most situations (see Fig. 2),
but depending on the car model they are partially occluded The estimated angle for the car can be obtained from

2z N .
left :\-\dlights Sl &

Zright




IV. VEHICLE MODEL AND TRACKING

{ )Z' sztti ;Iig:::(fgg ;irr'g:t (5) A simple constant velocity model is used to characterize
the movement of the vehicles. Position and speed are relativ
and solving fora to the egovehicle. For a first approximation to the problem of
vehicle tracking, a Kalman Filter (KF) is used. Considering
a = arcsin M) our simplified model and an urban scenario as the one in the
B XXt (6) test sequences, with vehicles driving at low speeds, a KF is
o =arcco W) enough to track most vehicles.

Due to the limited resolution of the image when the vehicle Fig. 8(a) shows several measurements of lights obtained

is far away the distance betweggyn andzey is very small, 3ft:ar Frgclgsr?;nglthe éma%e. A rectangle_|s drawn arIOl:ng
leading to underestimated angles. etected lights. In order to remove spurious or unrelate

measurements, a gate is placed around the actual or expected
position of the lights. Measurements outside the gate are
) unlikely to be produced by the car being tracked, and are
~The problem of the method above is that the actug{yt considered. The same process is applied for shadows.
distance between the lights is small compared to the dletanﬁig_ 8(b) shows an example of a gate drawn in an image.

to the car. In Eqg. 6, the denominatdignis can be Very yieasyrement gate for lights is drawn with dashed line, and
small. Thus, the estimation of the angleis very sensitive gate for shadow is drawn with solid line.

to measurement errors of the valuesdgfnis. The lengthL

of the car is usually more than twice as the width, and th
is a measure providing better resolution. The geometry ¢
the problem can be seen in Fig. 7. The length of the car c:
be estimated by detecting the wheels or the shadow uncg
the car.

E. Orientation computation using car length

" A s

The estimated angle for the car can be obtained solving
] (a) Detected lights in a frame (b) Gating of measurements
Up—Us  Xeft—Lsina 7 _ _ _ _

f = Zert 1 Lcosa ( ) Fig. 8. Detection of lights and gating of measurements.
whereug is the central point of the focal plane angdis the Measurements in the gate are associated with the cor-
detected most distant point of the shadow. Solving foosin responding lights using nearest neighbor (NN). If more
the following equation can be obtained than one light is found within the gate, an estimation of

2 distance is computed for all possible pairs of lights. The
sifa —2- Ky f -sina + Ki—1 =0 (8) pair that yields the closest estimation to the expectedevialu
Kz-Us 2 chosen. Using pairs instead of single lights solves patef t
with association problem, and reduces the probability of cimgpsi
Ko f Xeft— U Zeft K — f24-u2 g an unlikely pair of lights. Global nearest neighbor (GNN) or
1= L-us v 2= w2 ©) better techniques would have to be used otherwise. If no

] ) _.pair is found to be valid, estimation from single lights are
As above, the shape of the shadow is subject to the positiQBsidered. As a last resort, when no detected light is found
of the sun and weather conditions, and the detection errgf pe \5iid, an estimate of the distance is obtained from the
can be considerable. When the vehicle is far away, PoQfysition of the shadow of the car, if available, using tiae-
resolution may lead to the detectedoSa = Zshadow—Zeft  Earth assumption. Most frequently only one measurement is
being bigger than the value bfitself, which is an impossible 5, 5ijaple for the shadow, and thus NN obtains good results.
situation. Two variations of vehicle tracking, depending on the
variables used in the state vector of the KF, have been tested

A. Tracking in road space

This type of tracking uses the actual position of the vehicle
in road space, computed from the pixel values using one of

U
/T, the techniques above, with state vectos (zx,a,z X%, Q).

> The measurement gate is placed around the expected position

':f - : of the vehicle in(z,x), and the selected values used as inputs

| Zleft t—i— L cos o to the KF.

- 2 shadow - These computations carry the errors described in the

previous section. If they are too different from those of
Fig. 7. Car orientation estimation using car length. previous frames, it is possible that the gate will be placed



far from the current measurements, and tracking will be losif the estimation increases with the distance, due to the
for that frame. resolution of the camera. When the vehicle is frontal to the

We have tested two different gate sizes: one with a fixeegovehicle, the estimation is slightly shorter than theeoth
size in meters around the expected position of the vehiclmethods.
and an ellipsoidal gate, whose sizes depend on the distancé=inally, shadow-light estimation produces similar result
to the car and the variance of the error, as given by the Kk flat-Earth, with slightly larger values when the shadow

L extends from the actual size of the vehicle. This situation
B. Tracking in image space does not take place in our test data, but could turn prob-

This type of tracking uses the position of the vehiclegematic when the sun is low on the horizon, producing long
in the images. The measurement gate is placed around #feadows.
expected position of the lights and shadow in the image. If
both lights have been detected in the previous frame, tlee sizsoo
of the gate is a function of the distance in pixels between
the lights. Otherwise, the gate takes a fixed size.

This kind of indirect trackingis simpler because it only 250
performs the road space to image space transformation onc
which in addition makes it more robust if the required
assumptions do not hold in a frame. On the other hand, roa®®[
space tracking provides actual filtered estimations of teep
(z.d,a) of the tracked vehicle, while image space trackingwoi
does not.

V. TESTS AND RESULTS

100
Data used to test our system was collected by FOT-

—— FE(ellip)
researchers at the Vehicle and Traffic Safety Centre (SAFER — gtginlﬁlir)ect)
. . _— |
at Chalmers, for evaluation purposes. The videos wer¢ 5 ‘ : | | ‘ —
0 200 400 600 800 1000 1200 1400

recorded in an urban environment, at a frame rate-dfo
frames per second. Images are 640x480 pixels. Fig. 10. Trajectory in meters and angle estimation. Linescigid with
The data collected does not include readings from LIDAR triangle indicate the estimated angle. (Estimations fantéiefacing and
scanners or any other means of obtaining ground-truth galug'@dow-lights are offset for clarity.)
of the distance to the cars and their speed, which makes per-
formance evaluation subjective. Five vehicles appearlglea Fig. 10 shows the trajectory of the vehicle for 3 sets
in front of the egovehicle. Seven cars drive in the othePf assumptions described if lll, and the estimation of
direction on the same street, plus another four that are orfije angle at some points of the path. As expected, flat-
visible for a few frames. Several other vehicles appearén tHearth provides the smoothest estimation, while frontairfa
images, moving or parked on the streets, but are far from tigstimates are the noisiest.
egovehicle or are occluded. From the results, it is clear that all methods using tracking
The car that stays the longest within view does so for aboilt road spaceobtain similar results. At longer distances
400 frames. A few of these frames are shown in Fig. dfirst frames in Fig. 9(j)), the frontal-facing assumptioash
The vehicle is first detected at around 40 meters, and & higher error due to the poor estimation of the angle of the
gradua”y gets as close as 10 meters before disappearimg frﬁEhiC'G, which is used to correct the estimation. Flat{Eart
the images. Fig. 9(i) shows the distance estimation for tHend shadow-lights also obtain a more consistent estimate
sets of assumptions using an ellipsoidal gate, and an otdire®f the value of the angle, although the estimation of the
gate for flat-Earth and frontal-facing. In all cases theatise trayectory is virtually the same for all methods, as shown
estimation is quite noisy, due to both the low frame rate dh Fig. 10. Tracking inroad spaceprovides a smoother
the video, and errors inherent to assumptions made. estimation of the distances, and it is more robust to outlier
Flat-Earth assumption works well for most of the sedata than tracking inmage spaceas it is the case around
quence, with the exception of around frame 300. Fig. 9(dyjame #300. Measurements image spaceneed additional
and Fig. 9(d) show a change in the slope of the street. Indireéghecks to ensure they correspond to physically valid msti
tracking estimation then results in an over estimation ef thof the vehicles.
distance to the vehicle, while the direct estimation misses
few frames, as the measurements do not fall in the gate.
Frontal-facing estimation, on the other hand, works better Estimation of distances with a single camera presents a
when indirect tracking is used. The problem of this assumgseries of problems because no 3D data is available. This
tion is its dependence of the direction of the vehicle, and ianplies that some assumptions about the elements in the
quick, slight turn of the vehicle being tracked would resunlt scene have to be made. In our case, these include the
a measurement that will fall outside the gate. The sensitivi dimensions of the vehicles to be tracked, and the geometry

VI. CONCLUSIONS AND FUTURE WORK



(e) Frame 340, distance: 11.5m (f) Frame 377, distance: 10.1m  (g) Frame 494, distance: 13.7m (h) Frame 595, distance: 15.9m
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Fig. 9. Tracking of a car and distance to egovehicle, for is@ssumptions (FE = Flat-Earth, FF = Front Facing, SL = Swadght). Image samples
9(a)-9(h) correspond to results assuming flat Earth, wittkirg in road space.
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