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Abstract— This paper presents a nonintrusive approach for
monitoring driver drowsiness, based on computer vision tech-
niques, installed in a realistic driving simulator. An IR stereo
camera is placed in from of the driver in order to obtain
PERCLOS, the most confident drowsiness parameter [1], in
real-time and in a robust and automatic way. Our proposal
doesn’t need a calibration process and includes three main
stages. The first is the pre-processing stage, which includes
face and eye detection based on appearance strategy using
the Viola and Jones algorithm, and the equalization of the
eyes using a Hat transformation. An eye tracking strategy in a
sequence of image frames is then carried out. The second stage
executes the pupil position extraction and its characterization
using integral projection techniques and a Gaussian model.
The final stage executes the PERCLOS estimation, depending
on the eyes closed rate on duration of time interval and fusing
information obtained for each eye in the two images of the
stereo camera. For evaluation of the proposed system several
experiments have been designed by psychologists and carried
out. A preliminary study about the performance of the proposal,
based on confusion matrixes, is presented.

Index Terms— Intelligent Transportation Systems, Driver
Drowsiness, Confusion Matrix, PERcentage of eye CLOSure
(PERCLOS), Visual Fatigue Behaviour.

I. INTRODUCTION

Sleepiness during driving has been shown to result in a

greatly increased risk of suffering an accident. Specifically,

Klauer et al. [2] has shown that to drive while sleepy

increases the accident risk four to six times, compared to

alert driving. Furthermore, the risk of suffering an accident

is higher during night driving [3] or in situations with

reduced prior sleep [4]. In fact, at least 15-20% of all vehicle

accidents have been estimated to be sleepiness related [5].

Therefore, it is beneficial to develop a system to monitor

the physical and mental state of the driver and give alerts at

the critical moment when the driver is becoming fatigued,

thereby preventing traffic accidents.

In the last decade, diverse techniques have been used

to develop monitoring systems for a variety of purposes.

Those techniques used to detect a driver’s sleepiness can

be generally divided into three main categories [1]. The first

category includes methods based on biomedical signals, like

cerebral, muscular and cardiovascular activity [6], [7] and

[8]. Usually, these methods require electrodes attached to the

driver’s body, which will often cause annoyance to the driver.

Most of them are yet far from being effectively introduced

in the market, according to recent reviews [9].

The second category includes methods based on driver

performance, which evaluate variations in the lateral position

of the vehicle, in the velocity, in the steering wheel angle

and in other signals recorded by CAN [10], [11] and [12].

The advantage of these approaches is that the signal is

meaningful and the signal acquisition is quite easy. This is

the reason because such systems have indeed entered the

commercial market [13], [14] and [15] but, to the author’s

knowledge, in the open literature there are very few details

available regarding the mechanisms or parameters of these

systems. On the other hand, these systems are subject to

several limitations such as vehicle type, driver experience,

geometric characteristics, condition of the road, etc. Then,

these procedures require a considerable amount of time to

analyze user behaviours and therefore, they do not work with

the so called micro-sleeps—when a drowsy driver falls asleep

for a few seconds on a very straight road section without

changing the vehicle signals.

The third category includes methods based on driver visual

analysis using image processing techniques. Computer vision

can be a natural and nonintrusive technique for monitoring

driver’s sleepiness from the images taken by some cameras

placed in front of the user. These approaches are effective

because of the occurrence of sleepiness is reflected through

the driver’s face appearance and head/eyes activity. Different

kinds of cameras and analysis algorithms have been reported

in the literature for this approach: methods based on visible

spectrum camera [16] and [17]; methods based on IR camera

[1], [18], [19] and [20]; and methods based on stereo camera

[21] and [22]. Some of them are commercial products as:

Smart Eye [19], Seeing Machines DSS [20], Smart Eye Pro

[21] and Seeing Machines Face API [22]. However, these

commercial products are still limited to some well controlled

environments and they require of hard calibration processes.

Then, there is still a long way in order to obtain a robust

commercial product in this category.

Regardless of the type of measurement, one of the chief

problems of drowsiness detection studies is the difficulty of

carrying out experimental tests to validate the techniques.
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These tests are often conducted in laboratory with driving

simulators, because for safety reasons, road tests in real

vehicles have strong limitations. Laboratory settings allow

using controlled environments, in which drowsiness can

be induced, and it is possible to use many measurement

equipments that are difficult to integrate in real vehicles.

However, the principal limitations of laboratory experiments

are their lower realism and the risk of simulator sickness

[23]. Another important problem, in both road and laboratory

studies, is the alteration of the spontaneous behaviour of

drivers: drowsiness in real driving is caused by a combination

of the accumulated fatigue of the driver and the tiresome-

ness of a monotonous task, specially in familiar roads and

vehicles. The unusual experience of participating in such an

experiment, specially if there is an invasive instrumentation,

or the “white coat effect” due to the presence of researchers,

may hinder drowsiness; or on the contrary, the higher level

of stimulation in real road conditions may reduce sleepiness

[24]. This limits the efficacy of the experiments, since to

validate the models of drowsiness detection, it is important

to have a balanced and realistic quantity of records of users

in both wakeful and drowsy periods.

This paper presents a nonintrusive approach for monitoring

driver drowsiness, based on computer vision techniques,

installed on a realistic driving simulator. An IR stereo camera

is placed in front of the driver in order to obtain PERCLOS,

the most confident drowsiness parameter [1], in real-time and

in a robust and automatic way. Our proposal doesn’t need

a calibration process and includes techniques to overcome

the typical problems of image processing algorithms as

are: lighting conditions changes, user appearance and quick

movements. For evaluation of the proposed system several

experiments have been designed by psychologists and carried

out with a twofold objective: (a) To gather a database of

driving performance parameters, obtained from the simulator,

and PERCLOS, from professional drivers in both wakeful

and drowsy conditions, which may be successfully used to

study the measurable changes related to fall of attention and

drowsiness and accordantly to find patterns in those signals.

And (b) to validate correlation between subjective sleepiness

method used in this work as ground-truth, and PERCLOS

objective measures obtained with our system.

In section II the simulator, the method used to study the

fatigue and drowsiness in drivers and the generation of the

ground truth signal are described. Also, in section III the

algorithm used to detect the drowsiness or PERCLOS in

drivers is explained. After that, results associated with one

video sequence and its comparison with the ground truth is

presented in IV. Finally in section V conclusions and future

works are presented.

II. EXPERIMENTS AND DATA COLLECTION

The purpose of this section is to show the characteristics of

a realistic simulator and to explain the methodology carried

out by psychologists in the analysis task to evaluate the

drowsiness in professional drivers.

A. Realistic driving simulator

Simulation methodologies applied to training and research

in the field of road transport in Europe, have been proved to

be both cost-effective and efficient. Simulation aims to give

the driver an opportunity to immerse himself in his habitual

workplace. The study employed the realistic generation high-

fidelity simulator, shown in Fig. 1, at the CEIT [25].

Fig. 1. Simulator

The truck simulator has a real truck cab, an instructor

station, a rack of computers and a system of screens that

cover 180 degrees of vision. The truck cab is an Iveco

Stralis cab mounted on a Stewart platform 6GDL MOOG

Company. The electronics in the cabin have been replaced

by new electronics designed by CEIT. It has sensorised

the steering wheel with switches, levers and pedals and

changed the instrument panel by a virtual panel that allows

configuration to measure the different aspects of information

to be displayed to the driver. This is integrated into the

cockpit of the simulator. The simulator has 3 scenarios

(urban, interurban and mountain) with more than 250km of

roads allow driving in adverse conditions rain or snow, and

at different times of day or night. For the visualisation of the

simulation a set of 3 screens with re-configurable positions

cover a large area showing all angles of vision of drivers.

Two further monitors act as mirrors to the truck. Thus, this

simulator gives the researcher great flexibility to implement

recording systems specifically designed to test the reactions

and behaviour of professional drivers while they are driving

[26].

Psychologists need the simulator to have installed specific

systems to register the professional drivers behaviour. For

this propose, the realistic simulator register driver and driving

variables, wich the following systems:

• A stereo vision system based on active infrared lighting

to record the driver’s face.

• A recording system for the identification of parameters

related to driving behaviour (vehicle speed, steering-

wheel movement analysis, specific devices for the quan-
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tification of the driver’s condition of alertness, etc.).

The driver drownsiness signal is accurate because wide

experienced phycologist studied the registered variables.

The extreme driving conditions to which the drivers must

be exposed make it so that, only through a full-immersion

simulated environment, it is possible to develop the necessary

technology for the identification, detection and warning of a

state of drowsiness while driving.

B. Experimental protocol

The main target of this experimental protocol is to recreate

a suitable environment which would enable researchers to

detect drowsiness during driving. A large amount of infor-

mation about drowsiness detection studies and projects also

has been gathered and, lastly, we have wide experience in

extensive research into the professional driving field. The

driving task has been suitably studied by experts in Human

Factors. Their work allows formulating working hypothesis

which become part of the wording of the different simulation

exercises created with a view to developing and optimising

detection systems of drowsiness [27].

The data were collected from a simulator study in which a

total of 20 test subjects participated. The study was designed

such that each test subject would carry out driving sessions

during two different conditions: Either after having slept on

a regular schedule (from 23:00 to 07:00, with allowance

for one hour deviations from the schedule) for two nights

prior to the day of the experiment, or after having slept

only four hours during the night preceding the experiment,

thus being partially sleep deprived. Each test subject carried

out six driving sessions under each of the two conditions,

spread over a 24-hour period. Each driving session lasted

60 minutes. The tests subjects that participated in the study

were recruited from the Spanish national register of vehicle

owners, by random selection (only private vehicle owners

were included). They had to be frequent drivers, driving at

least 5000 km a year, and not suffer from habitual sleep

disturbances.

The problem of sleepiness detection has been usually

treated as a binary classification problem. In this work

we propose to use three classes in order to have a finer

classification of the driver’s state taking into account that

the Karolinska Sleepiness Scale (KSS) [28] has 9 different

levels. Then, to evaluate performance of our detector, the

problem of sleepiness detection was cast as a three level

classification problem, in which the data collected during

a given period of time (60 seconds, here referred to as a

driving period) was considered as having originated from

an alert driver, a fatigued driver or a sleepy driver. The

class assignment of the data from a given driving period

was based on the subjective sleepiness estimation of three

annotators. Taking the more repetitive estimations of the

experts as ground truth signal, the objective of the detector

was to classify correctly as many driving periods as possible.

Experts were trained to estimate driver’s levels of sleepiness

in an off-line process analysing video sequences and driving

signals performance obtained for each user during the driving

sessions. The estimates were based on the KSS that ranges,

in integer steps, from 1 (extremely alert) to 9 (very sleepy,

fighting sleep). However, in order to simplify the evaluation

and due to we have only three different categories in the

classification, only three classes where required for the expert

estimations (awake, fatigued, drownsiness). The Karolisca

scale is closely related to EEG and behavioral variables,

indicating a high validity in measuring sleepiness.

Experts can make off-line studies to determinate the driver

drowsiness state every minute with the recoded driver and

driving information and the proposal scale to evaluate the

drowsiness. While subjective estimations of sleepiness are

commonly used in studies on driver sleepiness, some re-

searchers have also considered objective measures of sleepi-

ness, in some cases also making comparisons with subjective

measures. To use subjective estimations of sleepiness as

ground truth is accepted for some authors but is rejected

for some others, being an open point in this discipline.

We have used this option because we don’t want to dis-

turb the spontaneous behaviour of drivers due to invasive

instrumentation or the presence of experts in the test. Then,

our proposal is to use subjective estimations obtained in

an off-line process analysing video sequences and driving

signals performance obtained for each user during the driving

sessions. Additionally, one of our goals in this work is to

analyse correlation between subjective estimations of experts

and an objective measures as is PERCLOS.

III. ALGORITHM FOR VISUAL-BASED DROWSINESS

DETECTION

The main system architecture diagram is shown in Fig. 2.

The input image, which is taken from an infrared sensitive

camera and active illumination, corresponds to a driver face

who can be affected by different states of drowsiness. The

input image is processed to detect face and eyes applying

Viola and Jones algorithm and a Kalman filter to smooth

position variation. Once the eyes are detected, iris centre

location algorithm is executed. It is based on integral pro-

jections and then a Gaussian model is correlated to obtain

eye centre and opening. This last parameter will be used to

measure PERCLOS. The PERCLOS is calculated in the two

image supplied by the stereo camera system and then the

mean of both values are evaluated. The comparison between

PERCLOS signal obtained from the system and the ground

truth generated by experts will show the accuracy of the

drowsiness detection algorithm.

A. Face and Eye detection

In this step eyes position will be located throughout the

whole image sequence. In general, it is very complicated

because of the different object colours, expressions, poses,

relative sizes and very uneven illumination conditions.

From all the techniques that are related to pattern recog-

nition, particularly in face and eye detection, Viola & Jones

[29] detector is selected because while the driver face is in

frontal orientation the Viola & Jones detection rate is very

hight and robust the PERCLOS measure. When the face
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Face and Eye Detection

Eye Image Preprocessing

Integral Projections

Eye Opening Evaluation

PERCLOS estimation

Iris Detection by Gaussian Model

Evaluation of the quality
for the drowsiness detection system

Drowsiness ground truth signal generation 

Driving Behaviour

Pupil position and 

characterization

Input_Image

Pre−processing stage

PERCLOS estimation

Drowsiness detection system

Fig. 2. General diagram

orientation is different the PERCLOS value is decremented.

This statistical method does not need any kind of previous

information from a concrete driver face. The information

needed to perform an object detection is extracted from the

training samples base.

This algorithm consist on a vector of Haar features ex-

tracted from input images which are the input of cascade

classifiers. These are hierarchical classifiers put one after

another one shorted by the importance of the features. The

direct application of this algorithm over the whole image

does not give good results. Because of that, eye search is

made in two steps. The first step is to look for the face on

the image, and once the area is found, eye detector is applied

on it. Detection failures in consecutive images are fixed with

a Kalman filter [18] per eye, and it keeps tracking with the

prediction only for a few frames. The Kalman filter model is

used to robustness the PERCLOS meausere in view of quick

face movements.

Face and eyes’ detection regions are shown in Fig. 3.

Fig. 3. Face and eyes detection

B. Eye Image Preprocessing

Once the region of interest is defined for each eye

with Viola & Jones, a hat transformation is applied. This

transformation consists of the subtraction from the original

image to the image in which a closing operation is applied.

This transformation erases most of the bright little parts

inside the eye and smoother images are obtained. To obtain

more robustness against illumination variations, an uniform

equalization is then used. In Fig. 4 three different images

are shown. The first one is the original image detected by

Viola and Jones, the second one is the result of the hat

transformation, and the third one is the equalised image.

(a) (b) (c)

Fig. 4. (a) Original eye detection; (b) Hat transform; (c) Equalized image

Eye features can be easily analyzed in the equalized image

than in the original one. The objetive of this stage is to

improve the image quality to calculate the eyes height and

width needed to detect driver drowsiness in a correct way

and robustness to lighting condition changes.

C. Integral projections

The concept of integral projection of an image assumes

that vertical projection is the average of the pixels from each

column, horizontal projection is the average of the pixels

from each row. It could be also done for any angle, taking

the average of the pixels in a specific direction.

Given an image I with dimensions WxH the integral

projections (horizontal PH and vertical PV ) are defined by

the following equations:

PH(y) =
1

W
·
W−1∑

x=0

I(x, y); ∀y = 0, . . . , H − 1 (1)

PV (x) =
1

H
·
H−1∑

y=0

I(x, y); ∀x = 0, . . . ,W − 1 (2)

The eye image has a circular gray level distribution due

to the iris features. These caracteristics do that the projective

integral in both axes has a Gaussian form with different

mode, median and mean parameters. For this reasson a

Gaussian model is used to evaluate the iris features.

D. Gaussian model

The Gaussian model is characterized by (3). This equation

has two parameters that determines the typical open eye

shape.

f(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 (3)

In Fig. 5 the results of applying integral projections to

an eye are shown. The iris centre estimation is obtained

convolving Gaussian functions with the projected arrays. The

maximum obtained from the convolution with the Gaussian

template corresponds with the most likely coordinate in

which the iris centre can be found.
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Because some times this maximun does not correspond

with the iris centre, an area near to this point is evaluated,

measuring the mode and the median parameters. When

density distributions are gaussian, unimodal, and reasonably

asymmetric. To measure asymmetry, Pearson coefficient is

calculated as follows in (4).

Ap =
median−mode

standard deviation
(4)

If the density distribution is symmetric, the following

condition is satisfied: median = mode and Ap = 0. On

the contrary, if there is an asymmetric function, Ap > 0.

This is very important to assert if there is an eye or another

dark object on the image. Experimentally projected functions

are found to have quite symmetric shape, which means that

the absolute value of the difference between median and the

mode is not too high. As a consequence, a low threshold

is the only value that is needed to know if the dark object

present on the image is an eye or not. This assumption is

valid for the most part of the candidates tested in different

conditions. In Fig. 5.(a) an iris centre detection is shown,

in Fig. 5.(b) represents a half closed eye and because it is

located in the right corner of the eyebrow the detected point

is classified as non-iris.

(a) (b)

Fig. 5. Classification of iris and not iris

When driver’s head is turned and the algorithm does not

detect any iris the PERCLOS decreases due to this is a clue

that the driver is awake.

E. Eye opening evaluation

Only when the algorithm detects an eye on the image,

the eye opening is calculated. The eye opening or the

iris height is evaluated measuring the standard deviation

of the Gaussian that characterises the eye. In Fig. 6.a this

concept is showed. To evaluate the eye opening percentage,

a previous calibration process is needed. The calibration

process is automatically made during the first 10 seconds

of the exercise. The driver has to look to the road, when he

is awake, in a relaxed position and the algorithm calculates

the eye opening value.

With this value is possible to evaluate the instantaneous

percentage of eye opening from the ratio between the iris

height in the current frame and the one obtained in the

calibration process. The eye opening percentage is used by

the next process, which evaluate the PECLOS value. In Fig.

6.b the obtained results are shown.

(a) (b)

Fig. 6. Sample of aspect-ratio of the eye opening

F. Drowsiness parameters estimation

PERCLOS [30] is one of the most representative param-

eters when driver drowsiness is measured [31]. It shows

how open and how long the eyes are opened computing the

average in a temporal window, whose duration is commonly

accepted to be 20 seconds.

To make this measurement more accurate, it is necessary

to distinguish between blink and PERCLOS. Blinking time

have to be removed from the accumulator to get better

estimations. A state machine is designed to do that. The

states are the following: open eye, blink eye and perclos eye

. Transitions between states are shown in Fig. 7.

Opening percentage 
below 80%

Opening percentage 
greater than 80%

Opening percentage 
greater than 80%

Open_Eye

Blink_Eye
PERCLOS_Eye

After the typical blink duration 

Less than typical blink duration 

Fig. 7. State machine diagram of PERCLOS measurement

If eye opening is under a threshold, which is typically

under the 80%, it is assumed that the eye is closing and the

next state will be blink eye. If it rise, the next state will be

open eye. On the contrary if eye opening go under 20% ,

two different cases can happen depending on the duration

that the system keeps in this state. If duration is less than

3 frames there is no change, but else the state changes to

perclos eye when the duration is more than 3 frames under

the 80%.

Fig. 8 shows a temporal representation of the eye opening

process. The PERCLOS calculates the variation of the eye

opening during 20 seconds. 22 frames are showed in the

figure. For each frame the eye is in a determined state.

When the state machine is in the PERCLOS state the frame
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is marked with one and when the state is different to the

PERCLOS the frame is marked with zero. This is shown on

the PERCLOS evaluation windows in the Fig. 8. The average

of the samples included in a temporal window of 20 seconds

gives the PERCLOS value.

0 0 0 01 1 1 1 1 1 1 1 0000000 0 0 0 0
evaluation window
PERCLOS

Frame1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 220

=

open eye

blinkPERCLOS

1 evaluate PERCLOS
0 not evaluate PERCLOS

nominalEye opening ratio = R
Eye opening (%) Instant eye opening

typical eye opening
100

nominal

nominal

nominal

nominal

   100%  R 

   80%  R 

  20%  R

  0%  R

Fig. 8. Temporal tendency of eyes opening

PERCLOS is calculated in the two image supplied by the

stereo system and then the mean of both values is taken as

output value.

IV. EXPERIMENTAL RESULTS

The results presented here are included within the CAB-

INTEC project. The study was done with 20 users and the

results obtained from one of them are shown. The scenario

for this test has the following characteristics: a deprived user

of sleeping and a duration about 85 minutes. The ground

truth signal is assessed off-line by experts and it is used to

evaluate PERCLOS signal accurately. Ground truth signal is

shown at the top of Fig. 9. It is discretized into three levels:

an initial awake level which is represented by 0, a second

fatigue level which is represented by 1 and a third drowsiness

level which is represented by 2.

PERCLOS is evaluated at a frequency of 30 times per sec-

ond, recording about 144,000 PERCLOS measures through-

out the test. Due to the ground truth signal is build every

minute, the PERCLOS signal is decimated at a frequency of

1Hz to compare both signals. The decimation is calculated

using the average of the instantaneous values over a period

of one minute. Once the PERCLOS value is calculated at this

frequency, the signal is discretized into three levels, placing

a threshold at 15% as the limit between wake and fatigue,

and a threshold of 23% for the limit between fatigue and

sleepiness, as shown in the graph below in Fig. 9. Once

these thresholds are calculated under supervision by expert

psychologists, the three-phases state system is obtained, as

shown in the central graph of Fig. 9.

Due to the classifier is not binary, the typical ROC

curves cannot be used. Paterl and Markey [32] proposed a

method for the goodness of classifiers which have N different

classes. In this case the confusion matrix will have N*(N-1)

elements and it is shown in the table I.

Where Awake(0) → Drow(2) is the percentage of

Awake(0) states that have been classified as Drow(2) ones.

The confusion matrix is calculated from the comparison

between the ground truth and PERCLOS. Table II depicts the
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0.5
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1.5
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minutes

F
a

s
e
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0.3

0.4

0.5
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minutes

P
E

R
C

L
O

S

 

 

PERCLOS

threshold_phase_I

threshold_phase_II

Fig. 9. Ground truth vs PERCLOS

TABLE I

CONFUSION MATRIX

AwakeGT (0) FatGT (1) DrowGT (2)
Awakedet(0) Awake(0) → Awake(0) Fat(1) → Awake(0) Drow(2) → Awake(0)
Fatdet(1) Awake(0) → Fat(1) Fat(1) → Fat(1) Drow(2) → Fat(1)
Drowdet(2) Awake(0) → Drow(2) Fat(1) → Drow(2) Drow(2) → Drow(2)

confusion matrix obtained for one driver that present several

drowsiness states.

TABLE II

CONFUSION MATRIX

AwakeGT (0) FatGT (1) DrowGT (2)
Awakedet(0) 0.8235 0.2083 0.2857

Fatdet(1) 0.1765 0.5833 0.2619

Drowdet(2) 0 0.2083 0.4524

Once the confusion matrix is obtained an equilateral

polygon of N*(N-1) edges, percentages of bad classified

results from the confusion matrix are represented on a radial

graphic. In this case the shape will be a hexagon like the

one shown in Fig. 10, which corresponds to the confusion

matrix from table II.

The dark grey hexagon represents the random classifica-

tion. The random classifier hexagon would have an inner

hexagon if the clasification is good. The less area the hexagon

has, the greater the specificity is and the better classifier is

obtained. As it can be seen, the randon classification hexagon
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Fig. 10. Bad classification hexagon

contains the classifier hexagon, and it has a lower area than

the random one.

Similarly, Fig. 11 represents a correct classification trian-

gle, which corresponds with the confusion matrix from table

II.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

Awake
GT

 >> Awake
det

Fat
GT

 >> Fat
det

Drow
GT

 >> Drow
det

Fig. 11. Correct classification triangle

The dark grey triangle represents the random classifier.

The random classifier triangle would have an outner triangle

if the clasification is good. The greater area the triangle

has, the greater the sensitivity is and the better classifier is

obtained. It can be appreciated that the correct classification

triangle contains the random classification triangle, and it has

a greater area than the random one. The numeric resuls, in

this concrete user, are 83% of awake state recall rate, 58%

on fatigue state and 45% on drowsiness state.

In general, the mean results obtain by all users are 83.5%

of awake state recall rate, 57% on fatigue state and 46% on

drowsiness state. These results are similar to the user results

showed.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a non intrusive approach for monitor-

ing driver drowsiness, based on computer vision techniques,

installed in a realistic driving simulator.

The proposed drowsiness detection method has demon-

strated to be valid, showing an 85% of awake state recall

rate considering only PERCLOS.

The computer vision and the Gaussian model method

does not need fixed threshold to determine the eye opening.

However the PERCLOS signal assessment needs a nominal

or fixed eye opening threshold value. This nominal value is

dependent on the constraints of the driver’s eye and it is

calculated in an initial automatic process.

The discrete drowsiness signal with three levels (awake,

fatigue and drowsiness) resulting to the continuous PERC-

LOS signal is assessmented supervising the continuous PER-

CLOS signal with the users recorded videos in off-line mode.

The annotators generate two thresholds that discretized the

continuous signal in three levels. In future works, these two

thresholds could be assessment with data analysis techniques

and will be evaluated automatically. Introducing a neural

classifier based on the first measures would be interesting

to particularize it for each user.

Generate a ground truth drowsiness driver signal by expert

psychologists is important to evaluate the recall rate of any

method related with drowsiness detection.

The results shown in this paper are related to the described

simulator. A good way to measure how robust is the algo-

rithm presented is to apply it in outdoors conditions.

If a camera is removed, the system will be less expensive

but will decrease the measure accuracy. The data fusion of

the following parameters: PERCLOS, blink frequency, fixed

gaze, lane deviation and amplitude of wheel turns are needed

to increase the measure accuracy.
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