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Abstract— Pixel-wise semantic segmentation unifies distinct
scene perception tasks in a coherent way, and has catalyzed
notable progress in autonomous and assisted navigation, where
a whole surrounding perception is vital. However, current main-
stream semantic segmenters are normally benchmarked against
datasets with narrow Field of View (FoV), and most vision-
based navigation systems use only a forward-view camera.
In this paper, we propose a Panoramic Annular Semantic
Segmentation (PASS) framework to perceive the entire sur-
rounding based on a compact panoramic annular lens system
and an online panorama unfolding process. To facilitate the
training of PASS models, we leverage conventional FoV imaging
datasets, bypassing the effort entailed to create dense panoramic
annotations. To consistently exploit the rich contextual cues in
the unfolded panorama, we adapt our real-time ERF-PSPNet to
predict semantically meaningful feature maps in different seg-
ments and fuse them to fulfill smooth and seamless panoramic
scene parsing. Beyond the enlarged FoV, we extend focal
length-related and style transfer-based data augmentations, to
robustify the semantic segmenter against distortions and blurs
in panoramic imagery. A comprehensive variety of experiments
demonstrates the qualified robustness of our proposal for real-
world surrounding understanding.

I. INTRODUCTION

In the context of intelligent transportation systems, pixel-
wise semantic segmentation has attracted rising attention
to enable a unified view of semantic scene understanding,
universally desired by Intelligent Vehicles (IV) navigation
systems [1]. However, almost all semantic perception frame-
works are designed to work with conventional sensors cap-
turing a limited Field of View (FoV), such as forward-facing
cameras integrated in autonomous vehicles [2] or wearable
robotics [3]. Besides, mainstream semantic segmenters are
normally benchmarked against conventional FoV images in
public datasets, e.g., Cityscapes [4] and Mapillary Vistas [5].
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Fig. 1. The proposed panoramic semantic segmentation on real-world
surround image captured by our panoramic annular lens system.

This renders semantic segmentation as an insufficient so-
lution to scene understanding, because autonomous/assisted
IV need measurably reliable and comprehensive perception
of the whole surrounding in order to support upper-level
navigational tasks. In this sense, extending semantic segmen-
tation to panoramic perspective is crucial for safe navigation,
especially in complex urban scenes such as overcrowded
intersections and roundabouts.

To this aim, there are some semantic perception frame-
works that have addressed panoramic segmentation by ar-
raying several conventional cameras [2][6][7] or attaching
fish-eye cameras with pronounced lens-introduced distor-
tions [8][9][10]. However, these platforms typically require
stitching segmented maps from multiple cameras with vary-
ing orientations [6][7][8], or only cover less than 180◦

semantic understanding of the forward surroundings [2],
while perception system using only a single camera to
achieve 360◦ panoramic semantic segmentation is scarce in
the state of the art. To fill this gap, we propose a Panoramic
Annular Semantic Segmentation (PASS) framework using
our previously designed Panoramic Annular Lens (PAL) [11],
whose compactness is a certainly desirable trait for IV
or wearable navigation assistance applications [1]. Another
tractable aspect is that its distortion is well maintained in less
than 1% and the imaging model follows a clear f-theta law,
convincingly appealing for deploying a panoramic semantic
perception approach characterized with comprehensiveness.

On the other hand, the fundamental challenge to accom-
plish this goal lies in the preparation of extensive pixel-
accurate annotations which is extremely labor-intensive and
time-consuming. Instead, if we could exploit conventional
FoV images for training a pixel-wise panoramic segmenter,
this would be immensely beneficial for our omnidirecitonal
sensing system to support a comprehensive variety of driv-



ing/navigating conditions. To mitigate the data insufficiency,
we leverage the public Vistas dataset [5] to yield PASS
models bypassing the effort needed to create dense pixel-
exact annotations. To preserve the contextual priors in the
panoramic content after image unfolding, we adapt our
efficient ERF-PSPNet [1][3] to infer semantically different
feature maps and fuse them to complete the panoramic
segmentation (see Fig. 1) through the last fully convolutional
layers. To improve the robustness of PASS model, we apply
an extended set of data augmentation methods, earning
specialized knowledge in panoramic content towards real-
world autonomous/assisted navigation. To the best of our
knowledge, this is the first panoramic semantic segmentation
framework using a PAL system without stitching segmented
maps from multiple cameras nor unwrapping fish-eye images
with remarkable distortions.

We have already presented some preliminary studies on
pixel-wise semantic segmentation combined with unified ter-
rain awareness [1] and pixel-wise polarization prediction [3].
In this paper, we explore on the comprehensiveness aspect
where the central contribution is the proposed PASS frame-
work. Additionally, the following bullets sum up technical
innovations delivered in this paper:

• A PASS pipeline involving annular image unfolding,
semantic feature map predicting and fusing to fulfill
pixel-wise segmentation in panoramic imagery. Code
associated with replication of the experiments and im-
plementations will be open-sourced at1.

• A wearable prototype with an omnidirectional PAL
system for capturing and collecting panoramic images.

• A finely annotated semantic segmentation dataset for
benchmarking panoramic perception algorithms and
evaluating real-world performance. The PASS dataset
is publicly offered to the community.

• A cluster of specialized ring-padding, cross-segment
padding, and upsampling operations to enable true 360◦

semantic scene parsing.
• An extended set of focal length-related and style

transfer-based data augmentations to attain robustness
against distortions and blurs in panoramic content.

II. RELATED WORK

A. Fish-eye and Panoramic Semantic Segmentation

Omnidirectional vision sensors are capable of captur-
ing larger FoV of surrounding scenes than traditional pin-
hole cameras, whose proliferation is accelerating for be-
ing mounted on retrofitted IV perception platforms. How-
ever, contemporary works using omnidirectional cameras
have predominantly focused on visual localization [12] and
monocular depth estimation [13]. In contrast, panoramic
semantic segmentation, which has not been explicitly inves-
tigated, should be traced back to fish-eye image parsing.
L. Deng et al. [9] overlapped pyramidal pooling [14] of
encoded feature maps for fish-eye image segmentation that
theoretically facilitates the entire understanding of frontal

1Code and Dataset: github.com/elnino9ykl/PASS

hemispheric view. They extended the work by using four
wide-angle cameras to build a surrounding view system,
restricted the deformable convolution to learn geometric
transformation and keep spatial structure within fish-eye
perspective [8]. Á. Sáez et al. [10] followed this trend
by implementing real-time fish-eye image segmentation and
outperformed the seminal work [9] in terms of both inference
speed and accuracy using ERFNet [15], where the eventual
goal was to complement a LiDAR sensor installed in their
autonomous vehicle.

W. Zhou et al. [2] replaced a 56◦ FoV camera with
three 100◦ FoV lens in an array, aimed to parse a full
forward-facing panorama by stitching the undistorted fish-
eye segmentation maps. However, it was still only able of
perceiving the surroundings in front of the vehicle. To enable
panoramic automotive sensing in urban environments, R.
Varga el al. [6] proposed a super-sensor with four fish-eye
cameras, whose images were segmented by using a boosted
forest and unwarpped on cylindrical projection surfaces. In
spite of being able to attain horizontal 360◦ coverage of
the vehicle surrounding, a large portion of vertical FoV
was sacrificed to preserve straight lines. Similarly, pursuing
perception wideness around a test vehicle, five cameras were
placed equiangularly on top of the instrumented car by
K. Narioka et al. [7]. They trained only with front-facing
camera images to maintain compactness of Convoluntional
Neural Networks (CNNs) and grasped all-direction semantics
and depth estimations. Unlike these methods that need to
be modeled in complex separate ways, we aim to use a
single camera to comprehensively parse real-world scenes
and revive the PAL-based vision research line.

B. Semantic Segmentation Datasets and Data Augmentations

Propelled by the breakthrough of deep learning, semantic
segmentation has approached the crucial point to unify
diverse perception tasks desired by autonomous/assisted nav-
igation systems. While encouraging, semantic segmentation
based on CNN architectures has evolved a high reliance
on the visual data, from which semantically meaningful
features are directly learned in the training process. Naturally,
semantic segmentation datasets have played an essential role
and spurred key creativity in IV research field. In the last
years, numerous IV-oriented datasets have emerged such
as Cityscapes [4] and Mapillary Vistas [5]. Cityscapes is
one of the milestone benchmarks with videos taken from
a camera behind the windshield of the IV, which only
offers forward-view of semantic urban scene understanding.
Vistas is a large-scale segmentation dataset that attains global
geographic reach of observations from different continents,
and extends front-facing perspective to diverse capturing
viewpoints (e.g., from roadways, sidewalks, unconstrained
environments and off-road views), with promising implica-
tions in a broad variety of robotic vision applications [3].
These datasets have thousands of images, but even their
variety does not assure satisfactory results of current seg-
menters in unfamiliar domains. Synthia [16] was proposed
to facilitate learning with synthetic images. Its virtual ac-



Fig. 2. The proposed panoramic annular semantic segmentation framework.

quisition platform incorporates four 100◦ FoV binocular
cameras with certain overlapping that can be used to create
an omnidirectional view as validated in [8]. The TorontoCity
benchmark [17] collected spherical panoramas from both
drones and vehicles with pixel-level roadway annotations.
While these outdoor panoramic datasets are serviceable, sig-
nificant distortions were introduced which are not compatible
with images captured by our PAL system.

Under the vital topic of robust scene understanding, data
augmentations have been broadly adopted to expand the
datasets and combat overfitting as an implicit regularization
technique. To robustify against unseen domains, a recent
effort has been made to separate augmentations between
geometry and texture, which also achieved desired network
calibration [18]. Regarding specialized augmentation meth-
ods to earn robustness against distortions that are inevitable
when cameras have very large FoV as pointed out in [6],
skew and gamma corrections were investigated in [2], while
zooming policy was designed for fish-eye images in [9]. In
this work, we extend the zoom alteration and combine it with
style transfer-based augmentation for panoramic semantic
segmentation, and perform a systematic analysis on the
robustness gains at the deployment level when trained with
conventional FoV images, despite the ubiquitous use of data
augmentation, to elevate accuracy on benchmark databases
or real navigation systems.

III. FRAMEWORK

A. Training Stage

The overview of the proposed PASS framework is depicted
in Fig. 2. In the training stage, our publicly available se-
mantic segmentation network ERF-PSPNet [1][3] is adapted,
which is built using an efficient encoder from ERFNet [15]
and a pyramidal pooling-based decoder from PSPNet [14].
Our ERF-PSPNet inherits both technical gists including
spatial factorized filters, sequential/hierarchical dilations and

pyramid representations, so as to strike an essential balance
between real-time speed and accuracy, and outperforms
ERFNet in context-critical domains [1] while maintaining the
compactness to be easily deployed in an embedded system
such as NVIDIA Jetson TX1/TX22. By training on a conven-
tional FoV imaging dataset, an efficient segmentation model
F is yielded. Given a conventional FoV image, IH×W

c , a
segmentation map, SH×W

c , at the inputting size H×W can
be accurately predicted by F that can also be separated into
a feature model Fe and a fusion model Fu, formally:

SH×W
c = F

(
IH×W
c

)
= Fu

[
Fe

(
IH×W
c

)]
In this work, we re-purpose it to address panorama

segments semantic segmentation, where global contextual
information is rich and should be exploited in a deeper way
than learning from local textures.

B. Deployment Stage

In the deployment phase, the PAL system is calibrated
and the panoramic image is unfolded using the interface
provided by the omnidirectional camera toolbox [19]. The
unfolded panoramic image is partitioned into M segments
as it is depicted in the following equation:

IHp×Wp
p =

M⊎
i=1

(I
Hp×

Wp
M

i )

Vitally, in the re-separated ERF-PSPNet (Fe + Fu), the
feature model Fe is responsible for predicting high-level
semantically meaningful feature maps of panorama segments
and the fusion model Fu is in charge of final classifi-
cation and completing the full segmentation. To complete
the panoramic parsing, the straightforward solution is to
directly integrate the inferred pixel-wise probability maps

2ERF-PSPNet: github.com/dongmingsun/tx2-erfpsp



of M segments along the unfolding direction. Instead, we
propose to use only the feature model Fe, as shown in Fig. 2,
which excludes the last convolution layer of ERF-PSPNet to

predict feature maps of each segment (IHp×
Wp
M

i ) taking into
account there is a correspondence between features inferred
from the panoramic segments and features inferred from the
conventional images used in the training:

F

(
M⊎
i=1

(I
Hp×

Wp
M

i )

)
≡ F

(
N⊎
j=1

(Ic
H×W
j )

)
After the concatenation of the M segments and a max-

pooling process to recover the original feature model size,
the entire panoramic annular image is smoothly parsed by
the fusion model Fu, since semantically abstract features
have already been extracted and aggregated. Followed by
a bilinear upsampler, the final panorama segmentation map
S
Hp×Wp
p is obtained by matching to the inputting size:

SHp×Wp
p = Fu

[
M⊎
i=1

Fe

(
I
Hp×

Wp
M

i

)]
where

⊎
denotes concatenation of feature maps, which

can also be considered as a feature denoising block to
increase robustness when added before the 1×1 convolution
layer [20]. For illustrative purposes, M is set to 2 in Fig. 2. In
our experiment section, different settings (M =1, 2, ..., 6) are
explored and compared to study the effect of this FoV-related
parameter on the final 360◦ segmentation performance.

C. Network Adaptation

We propose some network adaptation techniques to face
borders discontinuity in the panorama (see Fig. 3) or overlap-
ping of the different segments when splitting the panorama,
because impairing the context around the borders results in
inconsistency and performance decrease. In the convolution
layers, instead of traditional zero-padding around the feature
map boundary, a column of padding is copied from the
opposite border for both 3×3 and horizontal 3×1 convolution
kernels, implementing continuity in the panorama. This is
due to an unfolded panorama can be folded over itself by
stitching left and right borders together as depicted in Fig.
3. This operation was first introduced as ring-padding in [13]
for monocular depth estimation without any quantitative vali-
dation. In this paper, we not only provide real-world accuracy
analysis, but also extend this concept to factorized and dilated
convolutions that are essential for efficient aggregation of
more contextual cues. In our architecture, stacks of dilated
convolution layers in the encoder of ERF-PSPNet help
to exponentially enlarge the receptive field of convolution
kernels [1]. Accordingly, the padding has been proportionally
widened to the dilation rate. We also extend the ring-padding
concept to the cross-segment padding case where the copy
is made from the neighboring segment when partitioning the
panorama into multiple segments. Additionally in the bilinear
interpolation layers of our decoder, we include specialized
ring-upsampling and cross-segment upsampling to eliminate
the undesirable boundary effects.

(a) (b)

Fig. 3. Panoramic annular images can be folded back into 360◦ cylindrical
rings for seamless padding and upsampling.

D. Data Augmentation

Our purpose is to learn from conventional imaging dataset,
while yielding models that must be robust against other
domains and numerous blurs/distortions appear in unfolded
panoramas. More precisely, Mapillary Vistas [5] is used
for training, taking into a key consideration with respect
to its high variance in camera viewpoint and focal length.
Towards cross-domain robustness, different random data
augmentation techniques, separating in geometry, texture,
distortion and style transformations, are performed in the
training process:

1) Traditional Geometric and Textual Data Augmentation:
Regarding geometric augmentations, random rotation and
shear are firstly implemented with degrees both uniformly
sampled from the angles [-1◦, 1◦] to change positions of
pixels while maintaining lines straight. Followed by ro-
tation/shear transformation, we implement translation and
aspect-ratio augmentation. These augmentation effects are
enabled together with scaling and cropping, by sampling
distributions from [0.5, 1.0] to cut both the image height
and width, and resize the randomly cropped sub-image to
keep the same resolution in the feeding batch. Additionally,
horizontal flipping is individually performed at a 50% oppor-
tunity to improve orientation invariance. Regarding textural
changes, brightness, contrast, saturation and hue variations
are simultaneously augmented by selecting the values in
random within the range [-0.1, 0.1] to improve the robustness
against diverse illumination conditions and color deviations.

2) Extended Barrel and Pillow Distortion Augmentation:
To create synthetic distorted training samples from the Vistas
dataset and extend the focal length data augmentation, it is
important to refer to the projection model and the original
alteration [9][10], where focal length f was empirically set
to map from each point Pa = (xa, ya) in the augmented
image to the conventional imaging point Pc = (xc, yc) by
adjusting the distance to the principal point Pp:

rc = f×tan(ra/f),



where rc denotes the distance between the point Pc and
the principal point Pp on the conventional image, while ra
correspondingly denotes the distance between the Pa the
principal point Pp on the augmented image. This mapping
helps to add robustness against barrel distortion that is
common in fish-eye images. In this work, we extend the
augmentation to address both barrel and pillow distortions by
additionally creating training samples with adjusted distance:

rc = f×arctan(ra/f).

Although this set of distortional augmentations doesn’t
strictly follow the PAL imaging law, the joint use with geo-
metric and textural augmentations helps to attain robustness
to the distortions in panoramic content. This work adopts two
scales of focal length (f = 692 or 1024) for both barrel and
pillow distortion augmentations, whose augmentation effects
can be seen in Fig. 2. Prior to this augmentation, the images
from Vistas are homogenized to 2048×1384.

3) Style Transfer Augmentation: It is well known that
large FoV imaging is generally associated with lower optical
resolution [11]. The image resolutions of raw annular images
(6000×4000) and unfolded panoramas (2048×692) are high,
but the PASS imagery is also somewhat blurry compared
with the high-quality VISTAS imagery, and a critical part
of panoramic images are captured in hazy weather and
low illuminated conditions. To improve the robustness of
semantic segmenters when taken outside their comfort zones,
we leverage CycleGAN [21] to learn a transformation back
and forth between the VISTAS and our PASS that are
two unpaired domains. We incorporate transformed training
images from Vistas while preserving the original geometry of
semantic labels as additional samples. In this way, the GAN-
based transfer is used as a stylizational data augmentation
technique to robustify against the blurs and compression
artifacts present in panoramic imagery. Otherwise, the lack
of invariance to blurring may bias the segmenter and corrupt
the prediction when learning from total high-quality images.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Setup

The segmentation performance is evaluated on the Mapil-
lary VISTAS validation dataset and our Panoramic testing
dataset (PASS dataset), which is collected by building a
personal navigation assistance device with the compact PAL
system that captures a FoV of 360◦×75◦ (30◦-105◦), as worn
by the user in Fig. 4a. The PASS dataset contains 1050 raw
and unfolded panoramic annular image pairs, from which
400 panoramas are finely labeled with masks on 4 of the
most critical classes for navigation assistance: Car, Road,
Crosswalk and Curb. Schematically, four unfolded ground-
truth annotated images are shown in Fig. 4b.

With the motivation of reflecting the robustness and
real-world applicability, our dataset includes challenging
scenarios, with a vital part of images captured at com-
plex campuses/intersections in/around Zhejiang University
at Hangzhou, China. Regarding the evaluation metrics, all

(a) (b)

Fig. 4. (a) Wearable navigation assistance system; (b) Unfolded panoramas
with annotations.

numerical results are gathered by using the prevailing “In-
tersection over Union” (IoU = TP

TP+FP+FN ) or “Global
Accuracy” (ACC = CCP

LP ) for fair comparisons.

B. Training Setup

The Mapillary Vistas dataset [5] is utilized for training
our semantic segmentation models to take advantage of its
wide coverage and high variability in observation viewpoints,
other than learning with only forward-view images [4][7].
Accordingly, we have 18000 training images from Vistas and
its 2000 images for validation. Ground-truth labels of the
5000 testing images are not openly available. In this work,
the annotated 400 panoramas from our PASS dataset are
readily accessible for evaluation by pursuing the deployment
pipeline with the trained models. Regarding the semantic
categories, we use 27 out of the complete 66 classes to fit
our campus/intersection scenarios and maintain the model
efficiency. These 27 critical classes cover more than 95%
of the labeled pixels, endowing the trained models with
advanced capacities to densely interpret metropolitan scenes.
Regarding the CNN training setup, we train all models under
the same conditions using Adam optimization [22] with an
original Learning Rate (LR) of 5×10−4 and Weight Decay
(WD) of 2×10−4, exponentially decreasing LR until the
loss converges when feeding images at batch size of 6 and
resolution of 1024× 512 on a single GPU NVIDIA 1080Ti.
The 2D version of focal loss [3] is adopted as the training
criterion instead of conventional cross entropy. Under this
setup, our ERF-PSPNet reaches mean IoU (mIoU) of 54.3%
on the validation dataset. This result achieved without any
data augmentation is marked as the baseline, where per-class
accuracy values are displayed in Table I(a), which verifies the
learning capacity of our ERF-PSPNet on large-scale dataset.

C. On the Influence of Number of Segments

Following the proposed segmentation pipeline, it is critical
to investigate the influence of the number of segments (M )
on the final performance in panoramic view. In this exper-
iment, the unfolded panoramic image has been partitioned
into 1, 2, ..., 6 segments, corresponding to a FoV of 360◦,



TABLE I
ACCURACY ANALYSIS.

Pol StL Bil TrL Car Tru Bic Mot Bus SiF SiB Roa Sid Cut
42.5% 26.9% 36.7% 54.0% 88.4% 60.6% 40.3% 40.7% 64.2% 63.5% 24.6% 87.6% 68.5% 8.6%

Pla BiL Cur Fen Wal Bui Per Rid Sky Veg Ter Mar Cro mIoU
24.2% 32.5% 53.8% 52.2% 45.8% 84.9% 64.6% 37.1% 98.0% 88.6% 65.2% 49.8% 61.8% 54.3%

(a) On the Accuracy of Semantic Segmentation. Pol, StL, Bil etc. are abbreviations of the classes.
Number of
Segments

FoV per
Segment Car Road Crosswalk Curb

1 360◦ 71.8% 72.2% 65.7% 66.4% 29.2% 30.6% 18.4% 18.2%
2 180◦ 87.7% 88.2% 77.6% 78.8% 49.5% 50.4% 29.4% 30.3%
3 120◦ 90.6% 91.0% 77.5% 78.3% 53.5% 53.9% 32.1% 32.8%
4 90◦ 91.0% 91.4% 76.7% 77.6% 52.6% 52.9% 32.9% 33.4%
5 72◦ 90.4% 90.7% 76.3% 76.8% 51.2% 51.6% 32.6% 33.0%
6 60◦ 89.3% 89.6% 75.5% 75.9% 48.7% 49.2% 31.7% 32.5%

(b) On the Influence of Number of Segments. Blue denotes higher IoU with specialized padding and upsampling. Red highlights the best IoU.

Model On VISTAS (Validation Dataset) On PASS (Testing Dataset)
mIoU Car Road Crosswalk Curb Car Road Crosswalk Curb

Baseline 54.3% 88.4% 87.6% 61.8% 53.8% 86.1% 71.6% 40.2% 32.8%
Distortional Augs (D) 53.4% 88.1% 87.0% 61.2% 52.4% 89.8% 73.3% 30.7% 30.2%
Traditional Augs (T) 52.9% 87.6% 86.6% 61.7% 49.0% 90.4% 74.2% 41.1% 33.2%
Combination (T+D) 51.7% 87.4% 86.4% 61.2% 47.5% 89.8% 75.8% 40.0% 31.2%

Stylizational Augs (S) 52.9% 87.8% 87.2% 61.7% 52.5% 89.8% 72.2% 48.3% 32.3%
All Augs (T+D+S) 52.1% 87.1% 86.9% 60.2% 49.2% 91.4% 77.6% 52.9% 33.4%

(c) On the Robustness of Panoramic Segmentation.

180◦, ..., 60◦ per segment. As displayed in Table I(b), if
you use only a feature model for the whole panorama, the
context is too wide and results are worse than when the
segment is more adapted to exploit the features of the classes.
Consequently, the 360◦-per-segment model suffers from a
large loss of accuracy with the incompatible contextual cues.
In comparison, the 180◦-per-segment predictor achieves the
highest IoU on roadway segmentation, while the 120◦-per-
segment predictor exceeds other solutions in terms of cross-
walk segmentation. Smaller classes will require more seg-
ments than for the segmentation of cars and curbs, 90◦-per-
segment is the optimal case. Vitally, regardless of segments
number, the use of specialized padding and upsampling helps
to boost the accuracy in almost all conditions, demonstrating
the effectiveness of our network adaptation proposal as one
of the key enablers to fulfill 360◦ semantic segmentation.

The segments finding is also consistent with the qualitative
results. As comparably visualized in Fig. 5, the 360◦-per-
segment results are undesirable with limited detectable range
of traversable areas, e.g., roadways and sidewalks. In Fig. 5a,
the 360◦-per-segment model wrongly colors the rider, and
360◦/180◦-per-segment models cannot detect the person on
the right side. Intriguingly in Fig. 5b, the 360◦-per-segment
approach has classified both crosswalk areas as general road
markings, while the 180◦-per-segment solution only correctly
identifies a crosswalk region. Our plausible hypothesis is that
in most of the training samples, only one crosswalk region
will be observed, hence 120◦/90◦-per-segment models are
better at crosswalk detection as well as the segmentation of
diverse vehicles and curbs. On the other side, when using
more feature models (M = 5 or 6), the segmentation tends
to become fragmented. To maintain a good trade-off, we set
M to 4 in the following experiments.

(a) (b)

Fig. 5. Qualitative examples of semantically masked panoramic images
by using our augmented PASS framework with different inference set-
tings. From top to bottom: 360◦-per-segment, 180◦-per-segment, 120◦-per-
segment, 90◦-per-segment, 72◦-per-segment and 60◦-per-segment results.

D. On the Robustness of Panoramic Segmentation

Taking an essential stride to delve into “accuarcy” and
“robustness”, the gap between these two concepts can be
better understood in the context of panoramic semantic
segmentation. We collect the segmentation accuracy on
the densely annotated Vistas validation dataset, in contrast
with the real-world accuracy on PASS for testing (both
in IoU), as displayed in Table I(c). The proposed set of
distortional (barrel+pillow) augmentations has incurred an



accuracy downgrade on the validation dataset that does not
contain distorted images. This is reasonable but we observe
that on PASS dataset, the segmentation accuracy has been
significantly boosted in terms of cars and roadways that
tend to be distorted in a uniform way, although it does not
necessarily mean that all unseen data with crosswalks and
curbs will face the modeled distortions. Noticeably, applying
the traditional (geometry+texture) alterations also produces
a large improvement, which makes sense since a certain
part of intersections in our PASS dataset are not as illumi-
nated as most scenarios from Vistas, needless to mention
that the augmented aspect ratio is critical for panoramic
segmentation. Traditional augmentation also implies a slight
accuracy decrease on validation dataset as the accuracy in the
unseen panoramic domain greatly increases, which further
gives an intuition on how augmenting data highly prevents
overfitting and helps yielding robust models for deployment.
Based on this notion, we combine the distortional and
traditional augmentations for training, and elevate to even
higher accuracy of roadway segmentation without having
seen any image from the panoramic domain, which is one
of the most important perception tasks within the context of
autonomous navigation [1].

Regarding the effect of stylizational data augmentation
by incorporating supplementary transferred images, it is
noteworthy that the IoU of crosswalk segmentation has been
remarkably improved, which is due to that within panoramic
imagery, most of the crosswalks are not as clear as those
in Vistas dataset. The style transfer algorithm excels exactly
at generating realistic blurs with an example visualized in
Fig. 2, thus making the augmented model more prepared
against the panoramic domain. When combining all hetero-
geneous data augmentations, the best accuracy boosts have
been achieved for all classes, outperforming any independent
augmentation by a large margin. This outstanding accuracy
also demonstrates that robust panoramic segmentation is
reachable against the challenging real-world PASS dataset.
Based on such compelling evidence, one valuable insight
gained from this cross-perspective experiment is that con-
ceptually, the divergence of “accuracy” and “robustness” is
not only a matter of CNN learning capacity, but also a matter
of training sample diversity.

Fig. 6 also demonstrates the effectiveness of data aug-
mentation, which is a visualization of roadway segmentation
accuracy values (ACC) on the panoramic dataset by using
the PASS model without/with data augmentation. Follow-
ing [12], we partition the panoramic image into 18 directions
and notice that the augmented model improves a lot upon
the baseline in all directions, while the advantage is also
pronounced in forward-view directions, reaching accuracies
of over/near 90.0% widely profitable for IV and wearable
personal guidance systems. Fig. 7 showcases diverse seg-
mentation maps in challenging frames of our PASS dataset.
It can be easily seen in all qualitative segmentation examples
of both campuses and complex intersections, our augmented
model delivers impressive 360◦ semantic segmentation de-
spite the distortions and blurs, owing to the proposed frame-

(a) (b) (c)

Fig. 6. (a) A raw panoramic annular example image to indicate the
orientation, (b) Segmentation accuracy values in different directions without
data augmentation, and (c) with all data augmentations.

work and the extremely positive effect of data augmentation
in refining and robustifying panoramic segmentation.

V. CONCLUSIONS AND ONGOING WORK

In this paper, we look into the expansion of the Field of
View of perception platforms by proposing a Panoramic An-
nular Semantic Segmentation (PASS) framework that promis-
ingly endows automated IV or wearable assisted navigation
systems with advanced capabilities to accurately interpret
the surroundings in a universal and comprehensive manner.
While the same panoramic view can be achieved from 4-6
cameras surrounding a vehicle with high resolution which is
normally kept as redundancy, our system only uses a single
camera. The proposed approach enables fully dense and
seamlessly panoramic semantic segmentation, meanwhile
leaving opportunities open to fuse with LiDAR and RGB-D
point clouds that could be displaced to lower priorities due
to the prohibitive costs of those sensors. With a new real-
world evaluation dataset, the extensive set of experiments
demonstrates that across domains, the robustness of 360◦

scene understanding has been augmented, even in complex
metropolitan campus/intersection scenarios with a great deal
of clutter and high traffic density.

Towards long-term navigation assistance, robotic vision
characterized with wide FoV and multidimensionality [3], is
a key source of momentum in our ongoing project. Since we
have identified new challenging automotive sensing problems
like the cross-perspective context issue, it is worthwhile con-
tributing future efforts by synthesizing semantics that con-
form to panoramic imagery. In addition, we will expand the
PASS dataset by labeling more classes and design relevance-
aware loss functions for safety-critical applications.
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