
HD maps: Exploiting OpenDRIVE potential for Path Planning and
Map Monitoring

Alejandro Diaz-Diaz1, Manuel Ocaña1, Ángel Llamazares1, Carlos Gómez-Huélamo1, Pedro Revenga1

and Luis M. Bergasa1

Abstract— Autonomous vehicle (AV) is one of the most
challenging engineering tasks of our era. High-Definition (HD)
maps are a fundamental tool in the development of AVs, being
considered as pseudo sensors that provide a trusted baseline
that other sensors cannot. Our approach is focused on the use of
OpenDRIVE standard based HD maps in order to conduct the
different mapping and planning tasks involved in Autonomous
Driving (AD). In this paper we present a method for exploiting
the HD map potential for two specific purposes: i) Global Path
Planning and ii) Monitoring the relevant lanes and regulatory
elements around the ego-vehicle to support the perception
module. Mapping and planning modules are connected to the
other modules of the AV stack by using ROS (Robot Operating
System). Our AD architecture has been validated both in
local and CARLA Autonomous Driving Leaderboard cloud,
where we can appreciate a considerable improvement in the
metrics by incorporating information from the HD map, not
only used to conduct the Global Path Planning task but also
providing prior information to the Perception module. Code
is available in https://github.com/AlejandroDiazD/opendrive-
mapping-planning.

I. INTRODUCTION

AVs need to locate themselves in the environment to know
what is happening close to them, in order to make decisions
and execute a correct navigation like a human driver would.
When we talk about localization, the first thing we need is a
map where to be located and, particularly for vehicles, this
is a road map. Road maps used by current navigators, e.g.
Google Maps, are not valid for AVs because of data type
and the fact that they are not accurate enough to be used
for autonomous driving. Here is where HD maps appear to
solve this problem. The concept of an HD map is a text
file describing the real-world features related to the road
map and its location within a 2D or 3D space and can
do things that other sensors cannot [1]: First, they have an
”infinite range” and, therefore, can ”see” even into occluded
areas. Second, maps will never fail due to environmental
conditions. Lastly, maps contain highly refined data. This
information can be used by different modules of an AV,
(including self-localization, vehicle control, path planning,
perception and system management) drastically reducing the
computational load and complexity in comparison to other

*This work was supported by Spanish MICINN/FEDER through
the Techs4AgeCar project (RTI2018-099263-B-C21) and from the
RoboCity2030-DIH-CM project (P2018/NMT- 4331), funded by Programas
de actividades I+D (CAM) and cofunded by EU Structural Funds.

1Alejandro, Manuel, Ángel, Carlos, Pedro and Luis M. are with De-
partment of Electronics, Polytechnic School, University of Alcalá, 28805
Alcalá de Henares, Madrid, Spain. {alejandro.diazd, manuel.ocanna, an-
gel.llamazares, carlos.gomezh, pedro.revenga, luism.bergasa}@uah.es

Fig. 1: Path Planning and Map Monitoring Outline

more complex methods, providing robustness and reliability
to the system. There is not a standard definition about which
data an HD map may include but, in the case of road
maps, we can consider: roads, lanes, regulatory elements,
topological information or any other information that can be
considered relevant to drive in a safety way. HD maps can
be used to alleviate the computational load of other modules
and add confidence to the real-world model. In our case, it
is used for two different purposes (see Fig. 1):

• Planning: Global Path Planning using as inputs the HD
map, ego-vehicle and goal locations.

• Monitoring: Monitored Area close to the ego-vehicle
using as inputs the HD map and ego-vehicle location.
The relevant monitored elements are: standard lanes,
intersection lanes and regulatory elements.

The combination of HD maps with onboard sensors and con-
trol systems leads to high-performance driving at the limits
and is a really promising approach to enable autonomous
driving [2]. One of the most challenging points of HD maps
is map generation, which is a very difficult task that can be
tackled using two different approaches:

• Dynamic HD map on the cloud that is being constantly
updated by other users in real time.

• Static offline HD map previously generated.
Our work is focused on the second approach: a static offline
HD map previously generated. There are two main ways for
generating a prior HD map:

• Automatically from converted scans of the real world
roads is the optimal long-term and scalable solution
[3] [4], but it can become a complex task with high
technical requirements depending on the map format in
order to obtain a reliable method.

• Manually is also a simpler option but requires tons of
human work, which takes a lot of time and is susceptible

to human errors. There are HD map designing tools
as Java OSM Editor (JOSM) [5] for OpenStreetMap
(OSM) [6] format or RoadRunner [7] for OpenDRIVE
[8] format.

There are multiple formats of HD maps, both in open
source formats and commercial solutions. Focused on open
source solutions, in [9] is presented a comparative of the most
popular formats. The two most relevant we have considered
are OSM and OpenDRIVE. There are also available libraries
for managing HD maps. In the case of OSM are Lanelet
[10] and Lanelet2 [11], developed in C++, and in the case
of OpenDRIVE is LibCarla, developed in C++ and presented
with a documented PythonAPI [12].

In this project we have used OpenDRIVE format because
it is the used by CARLA, the simulator we have used
to validate our whole AD architecture. We have designed
our own libraries, as many of the functionalities where not
available in LibCarla.

The following sections will cover the technical details
about how this work has been developed and the results
obtained in our local tests, that reproduce an environment
similar to the state-of-the-art CARLA Autonomous Driving
Leaderboard [13]. Finally, we will highlight the conclusions
obtained and the possibilities to continue extending this work
in the future.

II. RELATED WORK

Using HD maps for autonomous driving is a very useful
technique that has been used and studied since many years,
both in private and open source research. In [14], the authors
use the HD map concept for the iCity of the future, and the
3D mapping challenges it will present. But in the current
state-of-the-art there are different ideas about how an HD
map must be. There are works focused on generating the
HD map from scratch using onboard sensors like in [15],
where they use laser scans. Usual sensors for data acquisition
are real-time-kinematic positioning, inertial measurement
units, cameras and LiDARs. Other approaches start from a
previously generated HD map, updating it at the same time
that is used, as in the case of SLAMCU [16]. There are also
other techniques that focus on using HD maps for different
purposes and not on how the map is generated. The three
main application using HD maps are:

• Planning [17], [18], [19]: A topological road graph can
be generated for global planning. Also the geometries at
lane level can be obtained for motion and local planning.

• Perception [20]: HD map can be used as prior informa-
tion to overcome the limitations related to the on-board
sensors, such as occlusions, poor performance under
challenging weather conditions or sparse data.

• Localization [16], [21], [22]: Comparing static land-
marks, as traffic lights, defined in the HD map with the
equivalent information provided by perception systems
the ego-vehicle location can be estimated.

We have identified that many works, as the ones mentioned
above, make use of HD maps but without detailing which HD

map format they use or how they use them. In many cases
this is because a particular map format was developed for
their work or for confidential issues, highlighting the lack
of a standard for HD maps. The existing solutions can be
classified in open source and commercial solutions, but in
this work we will focus on the most popular in the case of
the open sourced.

A. Open source solutions

There are many open source mapping solutions, some of
them are compared in [9], in order to generate HD maps.
But based on popularity and their characteristics we have
considered OSM and OpenDRIVE as the best options:

• OpenDRIVE: It is a standard that models the road
network along a reference line. Previous versions Open-
DRIVE V1.4 and V1.5 were published by VIRES
Simulationstechnologie GmbH, and originally was an
open source standard. In 2018, the company ASAM was
entrusted with the further development of OpenDRIVE,
releasing their own version under the name of ASAM
OpenDRIVE V1.6. Currently, the standard and all the
documentation are still available free of charge on their
web. OpenDRIVE V1.4 is used in CARLA simulator
[23] and in our project, as well as maps generated with
the application RoadRunner in its version V1.4. The file
extension for maps of this format is xodr.

• OSM: This format allows to create maps using ge-
ographic points with different tags associated. Those
tags are used to define their topology and how they
are related to other elements. OSM maps can be down-
loaded from its web, or created using one of the multiple
existing applications as JOSM. The file extension for
maps of this format is osm.

B. Commercial solutions

In the case of commercial solutions is more difficult to
know the technical details of their developments, but it is a
fact that mapping companies are also working on HD map
solutions as is the case of NVIDIA DRIVE and HERE:

• NVIDIA: NVIDIA DRIVE Mapping module is part
of the NVIDIA End-to-End Autopilot Systems solution
[24]. It is a scalable solution that combines a sensor
suite, software and software APIs, with HD maps pro-
vided by mapping companies. It consists of: 1) DRIVE
Localization for determining the precise 6-DOF position
and orientation of an autonomous vehicle within an HD
map with centimeter level accuracy. 2) Drive Mapstream
for updating cloud based HD maps with road features
perceived by DRIVE Perception. 3) Drive MyRoute for
creating crowdsource maps of urban areas where there
are not HD maps yet.

• HERE: HERE HD Live Map [25] is the solution by
Here Technologies company. It uses machine learning
to validate map data against the real world in real time.
Their self-healing map analyzes data from multiple
sources, such as satellite imagery and sensors from

OEM fleets in real-time, allowing the maps to always
stay fresh and reliable.

After considering the different HD map solutions, we have
not tried to create a new HD map format to satisfy our
requirements because it would be contributing to avoid a
standardization of the HD maps. Instead, we have studied
the different existing formats to choose the one more appro-
priated to our project: OpenDRIVE. It offers a huge quantity
of accurate metadata, but on the other hand the structure of
the format is more complex than other standards because
OpenDRIVE already has a road map structure implicit in
the format. The complexity has been solved developing our
own library together with the library LibCarla provided by
CARLA simulator. The other main reason why we have cho-
sen this format is that in our project we work with CARLA,
and native format for the simulator maps is OpenDRIVE.

III. METHOD

We propose a complete method to work with OpenDRIVE
based HD maps from map generation, then parsing the map
file and finally using all this information for map monitoring
and path planning (see Fig. 2).

Fig. 2: Monitored Area and Path Planning in CARLA
simulator

A. Map Generation

The map generation has been done using RoadRunner tool.
This part includes all the process from the data acquisition
until the final map file that is used in the simulator and by the
mapping and planning modules. The map generation process
can be summarized in three phases:

1) Data acquisition: The first step is to map discrete
points of the real road boundaries using a Differential
Global Navigation Satellite System (DGNSS). This
data is saved in a gpx file, keeping a record of the
geographical points.

2) Map generation in Roadrunner: The gpx file is im-
ported in RoadRunner, so there is an accurate reference
blueprint to define the roads with precision. In this way,
a reference point is set so the map is georeferenced and
Universal Transverse Mercator (UTM) system can be
used.

3) Map import in CARLA simulator: Finally, the Road-
runner project is exported so it can be used in CARLA

and in the real prototype. The files exported are fbx,
xml and xodr. These three files are imported in Unreal
Engine so the map can be used in CARLA. Moreover,
only the xodr file is needed to be used by the map
monitoring and path planning tasks.

B. Road Map Modelling

Once selected the HD map format, the first task is to
model the roads in a text file (xodr in our case). In the
case of OpenDRIVE, roads are generated from a sequence
of segments along a reference line. The reference line is
a virtual line that can be composed by a sequence of
different geometries: straight, arc or spiral. All geometries
that describe the road shape and other properties of the road
are defined along the reference line. These properties are
lanes, signals and other road elements.

C. Lanes Discretization

Lanes are generated from the reference line (ds), which is
discretized as a list of n points along the total length of the
line separated by a constant value d:

ds = [0, d, 2d, ..., nd] ∀ n = [
total lenght

d
] (1)

The different parameters can be seen in Fig. 3. The
parameters needed to calculate a discrete XYZ point (red dots
in Fig. 3) in the reference line are: x0 and y0 (coordinates
xy where the reference line starts), hdg (heading at the
beginning of the reference line), ds (distance along the
reference line), type (straight line or arc), lane width (width
of the lane of the central node) and curvature ρ (only needed
in case of arcs). All these parameters are obtained from the
HD map.

Fig. 3: Lane discretization from the reference line

In case of straight lines, the equations to locate a discrete
position in the reference line are:[

x
y

]
=

[
x0

y0

]
+ ds ·

[
c(hdg)
s(hdg)

]
(2)

In Eq. 2 and the following equations, s and c are used instead
of sin and cos respectively.

In case of arc lines the equation are:

radius =
1

ρ
(3)

hdgaux = hdg + ds · ρ (4)

α = hdg +
π

2
(5)

β = hdgaux +
π

2
(6)[

x
y

]
=

[
x0

y0

]
+ radius ·

[
c(α) −c(β)
s(α) −s(β)

]
(7)

The road elevation is calculated using the same polynomial
function of third order in both straight and arc lines, so for
the Z coordinate the polynom parameters needed are a, b, c
and d:

z = a+ b · ds+ c · ds2 + d · ds3 (8)

Lanes are modelled generating points at both sides of the
discretized reference line (centered at the lane), left and right
nodes.

Lane boundaries can be obtained using these equations for
each xy previously obtained:

δ = hdg · π

180
(9)

[
r.x r.y
l.x l.y

]
=

[
x y
x y

]
+

[
c(δ) −s(δ)
−c(δ) s(δ)

]
· lw
2

(10)

The parameters of Eq. 10 are r (right node), l (left node),
x and y (central node), lw (lane width) and α (heading in
radians). The z parameter is the same in central, right and
left nodes.

D. Map Parser
The Map Parser module is in charge of getting the infor-

mation of the map from the OpenDRIVE file and transform
it into custom classes that can be used by other modules
like Planning or Perception. This module receives the Open-
DRIVE file and analyzes every single text line, detecting the
parameters and storing them into custom structured variables
that have been previously defined. The only input is the
OpenDRIVE file, and the output is a map object containing
all the map parsed information.

E. Map Monitor
The Map Monitor module is the part in charge of monitor-

ing the surrounding area of the vehicle and visualizing both
the monitored area and the lanes describing the roads of the
map, so we can consider two separated tasks: monitoring
and visualization. The inputs of the Map Monitor are the
information provided by the Map Parser and the waypoint
route previously obtained by the path planner (section III-
F), so it only monitors the elements around the route and
the ego-vehicle location to know in which part of the route
is the ego-vehicle. The outputs are the monitored elements
published in ROS [26] topics using custom messages and
markers published into ROS topics too so the elements can
be visualized using RVIZ (3D visualization tool for ROS).

The operation of the Map Monitor is mainly organized
into two callback functions: Route Callback and Location
Callback.

1) Route Callback: This function is called when a route
is published by the path planner. It divides the route in
segments separated by a given distance and calculates in
which segment of the route is the ego-vehicle, activating also
a flag variable so the Map Monitor can start operating. In
case it can not locate the ego-vehicle inside the route, it
deactivates the Map Monitor.

2) Location Callback: Location callback is called every
time that ego-vehicle position is published in its ROS topic,
that in our case it happens at a frequency of 10 Hz. This
callback checks some conditions like the flags generated in
the Route Callback and, if every thing is correct, then cal-
culates the monitored elements for a given distance. Finally,
the monitored elements are published in their corresponding
ROS topics. The threshold distance to monitor the current
lane is obtained using a braking distance model that uses
a linear regression with two arrays of velocity and braking
distance data.

The monitored elements are:
• Standard Lanes: Current, back and the corresponding

left and right lanes. Current lane is monitored from
current position to a dynamic distance depending on
the velocity of the ego-vehicle. Back lane is monitored
from current position to back a proportional distance
of the dynamic current lane obtained distance. Left and
right lanes are monitored the same distance that current
and back only if the lane marking from the HD map
data allows the lane change.

• Intersection Lanes: Other lanes that intersect the cur-
rent monitored lane are checked. Intersection lanes can
have different roles (see Fig. 4): split (1 lane splits
into 2 or more), merge (2 or more lanes merge into
1) and cross (a lane crosses a part of the current lane).
To calculate the intersection lanes, each lane of every
junction (junctions are areas where more than 2 roads
meet) in the current lane is evaluated. The polygon of
each lane is calculated and evaluated if is inside the
polygon of the current lane. Roundabouts are considered
as a set of multiple junctions.

Fig. 4: Intersection Lane Roles

• Regulatory Elements: The monitored elements are
stops, giveaways, traffic lights, speed limits and cross-
walks. The regulatory elements are only monitored for
the next intersection affecting the route.

F. Path Planner
The path planner is the module that receives ego-vehicle’s

position and goal position and calculates the route between

them as a list of waypoints centered in the lanes. A waypoint
is a structured object that represents a 3D point with location
(x, y, z), rotation (pitch, yaw, roll) and some other topological
information obtained from the HD map: road and lane
ID, lane width, lane marking and speed limit of the road.
To do that, it applies a Dijkstra algorithm to a road-lane
graph previously generated from the HD map to obtain a
topological (road-lane) route. Then, it generates waypoints
centered in every lane of the route separated by a given
distance. It also considers lane change when the order is
published by the decision making module. So there is a
fist topological route generated by the Lane Graph Planner
(LGP) and then a waypoint route is generated by the Lane
Waypoint Planner (LWP).

1) Lane Graph Planner: LGP generates a directed graph
(DiGraph) of roads and lanes from the HD map using
the Python module Networkx [27]. The LGP builds the
graph using edges, that represent the connection between
two nodes. In this case a node is a tuple of 2 parameters:
road id and lane id. Each edge is defined as a Python
set containing the input node, output node and weight. The
weight represents the cost that will be used by the graph
planner for going from the input node to the output node. In
this case the weights used are road lengths in meters and time
to travel the road in seconds calculated using the maximum
speed allowed for each segment.

To generate edges and build the graph, the LGP evaluates
connections for every road/lane of the map object parsed
from the HD map. Lane change is also considered adding
a cost value when it is allowed. Once we have the road
graph, the route is calculated using an Dijkstra algorithm
already implemented in the Networkx module as a method.
The route returned by the LGP is a topological route as a
list of tuples: (road, lane, action). Action can be lane follow,
lane change right or lane change left. It could be used as an
input to a perception based controller, but in our case a list
of waypoints must be provided [28].

2) Lane Waypoint Planner: The LWP is in charge of
calculating a list of waypoints separated by a given distance
for every road-lane calculated by the LGP. For doing that, it
uses the road-lane geometries obtained from the HD map and
the mathematical discretization explained in section III-C.

IV. EXPERIMENTAL RESULTS
In this section we present the results obtained, both

qualitative and quantitative. Finally, we discuss the results
obtained in the local tests reproducing the CARLA Au-
tonomous Driving Leaderboard.

A. Map Generation
The Map Generation method has been used to replicate

an area of our university campus. Fig. 5 shows how the map
has been generated from real data (Fig. 5a), imported into
CARLA (Fig. 5b) and then visualized using RVIZ (Fig. 5c).
The real AV prototype developed in our project currently
uses this map to navigate and it works exactly the same as
in the simulator for the path planning and map monitoring
described in this paper.

Town03 (Number of graph nodes: 397)
Algorithm Execution Time [s] Path Length [m]

A* 0.0268 823.50
Dijkstra 0.0259 823.50

Bellman Ford 0.0278 1083.98
Town10 (Number of graph nodes: 168)

Algorithm Execution Time [s] Path Length [m]
A* 0.0116 350.41

Dijkstra 0.0111 350.41
Bellman Ford 0.0118 350.41

CampusUAH (Number of graph nodes: 276)
Algorithm Execution Time [s] Path Length [m]

A* 0.0196 1280.84
Dijkstra 0.0183 1280.84

Bellman Ford 0.0195 1280.84

TABLE I: Results for different shortest path algorithms

B. Map Monitor

In Fig. 6 we can observe a qualitative result of the Map
Monitor in an intersection of Town03 from CARLA. The
monitored elements in the image are: global path with dis-
cretized waypoints, current and right standard lanes, merge,
split and cross intersection lanes and traffic lights of the
intersection.

The Map Monitor has been tested successfully in different
maps and multiple use cases including complex intersections.

C. Path Planner

The path planner developed in this work has been tested
for different routes and maps, and it has succeed reaching the
goal in all the cases, regardless of the map used or the route
length. Table I shows the results obtained for three routes in
three different maps, applying the most popular algorithms
for path planning: A*, Dijkstra and Bellman Ford.

The parameters evaluated in Table I are: 1) Execution
time, 2) Path length and 3) Number of nodes that form the
graph map. We observe that the path generated by the three
algorithms is the same, except for Bellman Ford in one of
the cases that generates a longer path. The execution time
increases proportionally to the number of nodes that form the
map graph, being Dijkstra always the fastest. The execution
time is valid for our system, considering that global route
is only calculated once at the beginning of a new route or
re-planning. Dijkstra is chosen due to obtain the best results
in all the cases.

D. CARLA Autonomous Driving Leaderboard

The leaderboard faces the agent to multiple traffic situa-
tions based on the NHTSA typology [29], characterizing its
driving proficiency by multiple metrics. The modality chosen
in this work has been the Map Track, where an HD map is
given as one of the inputs.

In order to validate the system, it has been tested pre-
viously in local tests and then submitted to the CARLA
Leaderboard cloud, due to the cloud tests only provide the
metrics but not the whole process feed-back for debugging
purpose. We have reproduced the leaderboard simulation
conditions in our local environment, generating exactly the
same metrics that are defined in it:

(a) Real environment (b) CARLA Simulator (c) RVIZ

Fig. 5: Different phases of the map generation process of our University Campus

Fig. 6: Monitored Area in RVIZ

Driving Score (DS) is the most representative metric of the
global result, being a product between Route Completion and
Infraction Penalty. Route Completion (RC) is the percentage
of the route completed. Infraction Penalty (IP) is a metric that
combines all the other specific infractions: The agent starts
with an ideal 1.0 IP, which is reduced whenever an infraction
is committed. For these three metrics, higher value is better.
The infractions considered are: Collisions with Pedestrians
(CP), Collisions with other Vehicles (CP), Collision Layouts
(CL), which means collisions with static elements, running a
Red Light Infraction (RLI) and running a Stop Sign Infraction
(SSI). There are other events considered that can interrupt
the simulation, preventing the agent to continue the route.
These events can be triggered because of a Route Deviation
(RD), a Route Timeout (RT) if the simulation is taking too
long to finish the route and Agent Blocked (AB) if the agent
is blocked for too long without taking any action. For the
infractions and the events described, lower value is better.

After running 5 different scenarios for each town in 6 dif-
ferent CARLA towns, we have obtained the following results
for two incremental experiments of our AV architecture. Ex-
periment 1 has a basic version of the Map Monitor that only
considers the current lane. Experiment 2 makes use of the
full Map Monitor system, in addition to other improvements
of the perception and decision making modules according
to the monitored elements provided. The path planner is the
same for both experiments, and has been used for calculating
the route in all the cases.

Table II and Table III show the results for the experiments
1 and 2 respectively. The Route Length (RL) average has

been also included in both tables. The metrics of DS, RC
and IP are the average values for each of the towns. The
other metrics have been normalized per kilometer.

As we can observe, comparing both tables, the results have
improved in most of the cases for the experiment 2 that
includes the full Map Monitor. Infraction penalties have been
reduced thanks to the security module that makes use of the
Map Monitor, providing a prior information about where to
look for obstacles and regulatory elements. The RC has been
improved because the number of events that interrupted the
simulation has been reduced. These events are mainly AB
events, that mostly occurred at intersections, and have been
reduced due to monitored intersection lanes. If we focus on
the global metrics, the improvements are: +137.67% DS,
+23.72% RC and +63.88% IP. The low values of the RD
validate the proficiency of the path planner working together
with the control module.

Finally, our full Map Monitor has been evaluated within
our full AV stack in the CARLA Autonomous Driving
Leaderboard on the cloud [30] obtaining the second place
in the Map Track.

V. CONCLUSIONS AND FUTURE WORKS

We have presented a method that exploits the potential of
HD maps, specifically OpenDRIVE format, for path planning
and map monitoring. The developed path planner applies a
shortest path graph based algorithm to a graph previously
generated from the OpenDRIVE map. The Map Monitor
proposed is a novel technique of using HD maps to provide a
priori information of relevant lanes and regulatory elements
to other modules of the AV, adding confidence to the system.
The method has been validated within a full AV stack in a
local tests of the CARLA Autonomous Driving Leaderboard
and in the cloud, proving the proficiency of the path planner
and showing how the different metrics improve after adding
the Map Monitor that is used by the perception module to
create a security module. The system has been also tested
in a real prototype, showing how the method works both for
simulation and real cases. For future works, we want to go
deeper in perception systems to detect static new elements of
the map, generating a perception based map monitor updater
for real time dynamic maps that reduce the impact caused
by positioning errors. In addition, more complex scenarios
will be consider to make a more reliable validation of the
method. Code is available in GitHub.

Town RL DS RC IP CP CV CL RLI SSI RD RT AB
[m] [%] [%] [0,1] [n/km] [n/km] [n/km] [n/km] [n/km] [n/km] [n/km] [n/km]

Town01 680.04 55.12 75.12 0.80 0.00 0.29 0.00 0.59 0.00 0.00 0.00 0.59
Town02 899.57 53.12 78.62 0.65 0.00 1.11 0.00 0.22 0.00 0.00 0.22 0.67
Town03 1520.76 2.36 77.02 0.04 0.13 2.50 0.39 1.45 1.45 0.13 0.00 0.13
Town04 2066.07 4.18 92.25 0.05 0.00 0.77 0.00 2.81 0.97 0.00 0.00 0.19
Town05 1043.06 9.81 38.60 0.48 0.00 1.53 0.19 0.77 0.19 0.38 0.00 0.38
Town06 1655.34 11.25 90.7 0.13 0.60 1.57 0.00 0.85 0.12 0.00 0.00 0.12

Global Metrics 1310.81 22.64 75.39 0.36 0.09 0.99 0.07 0.85 0.35 0.06 0.03 0.26

TABLE II: Experiment 1: Local results with basic version of Map Monitor

Town RL DS RC IP CP CV CL RLI SSI RD RT AB
[m] [%] [%] [0,1] [n/km] [n/km] [n/km] [n/km] [n/km] [n/km] [n/km] [n/km]

Town01 680.04 86.0 100.00 0.86 0.00 0.29 0.0 0.29 0.00 0.00 0.00 0.00
Town02 899.57 45.17 88.09 0.54 0.00 0.67 0.0 1.56 0.00 0.00 0.67 0.00
Town03 1520.76 56.44 86.56 0.7 0.13 0.13 0.0 0.39 0.00 0.00 0.00 0.13
Town04 2066.07 52.60 98.27 0.53 0.00 0.29 0.0 0.68 0.00 0.00 0.00 0.10
Town05 1043.06 38.42 86.76 0.46 0.00 0.96 0.0 1.15 0.19 0.19 0.00 0.00
Town06 1655.34 44.24 100.00 0.44 0.24 0.24 0.0 0.72 0.12 0.00 0.00 0.00

Global Metrics 1310.81 53.81 93.28 0.59 0.05 0.33 0.0 0.61 0.04 0.02 0.09 0.03

TABLE III: Experiment 2: Local results with full version of Map Monitor

REFERENCES

[1] K. Wong, Y. Gu, and S. Kamijo, “Mapping for autonomous driving:
Opportunities and challenges,” IEEE Intelligent Transportation Sys-
tems Magazine, vol. 13, no. 1, pp. 91–106, 2021.

[2] S. Song, “Towards autonomous driving at the limit of friction,”
Master’s thesis, University of Waterloo, 2015.

[3] F.-A. Moreno, J. Gonzalez-Jimenez, J.-L. Blanco, and A. Esteban, “An
instrumented vehicle for efficient and accurate 3d mapping of roads,”
Computer-Aided Civil and Infrastructure Engineering, vol. 28, no. 6,
pp. 403–419, 2013.

[4] M. Elhousni, Y. Lyu, Z. Zhang, and X. Huang, “Automatic building
and labeling of hd maps with deep learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 13255–13260,
2020.

[5] “JOSM (Java OpenStreetMap Editor).” https://josm.
openstreetmap.de/.

[6] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org .” https://www.openstreetmap.org,
2017.

[7] “Roadrunner.” https://es.mathworks.com/products/
roadrunner.html.

[8] “Asam opendrive.” https://www.asam.net/standards/
detail/opendrive/.

[9] J. Godoy, A. Artuñedo, and J. Villagra, “Self-generated osm-based
driving corridors,” IEEE Access, vol. 7, pp. 20113–20125, 2019.

[10] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in 2014 IEEE Intelligent Vehicles
Symposium Proceedings, pp. 420–425, IEEE, 2014.

[11] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann,
F. Kuhnt, and M. Mayr, “Lanelet2: A high-definition map framework
for the future of automated driving,” in Proc. IEEE Intell. Trans. Syst.
Conf., (Hawaii, USA), November 2018.

[12] “PythonAPI.” https://carla.readthedocs.io/en/
latest/python_api/.

[13] “Carla autonomous driving challenge.” https://leaderboard.
carla.org/challenge/.

[14] H. G. Seif and X. Hu, “Autonomous driving in the icity—hd maps
as a key challenge of the automotive industry,” Engineering, vol. 2,
no. 2, pp. 159–162, 2016.

[15] A. Barsi, V. Poto, A. Somogyi, T. Lovas, V. Tihanyi, and Z. Szalay,
“Supporting autonomous vehicles by creating hd maps,” Production
Engineering Archives, vol. 16, 2017.

[16] K. Jo, C. Kim, and M. Sunwoo, “Simultaneous localization and map
change update for the high definition map-based autonomous driving
car,” Sensors, vol. 18, no. 9, p. 3145, 2018.

[17] K. Zhang, S. Wang, L. Ji, and C. Wang, “High definition map based
motion plan and control of autonomous vehicle on structured road,” in

IOP Conference Series: Materials Science and Engineering, vol. 825,
p. 012018, IOP Publishing, 2020.

[18] A. Sadat, S. Casas, M. Ren, X. Wu, P. Dhawan, and R. Urtasun, “Per-
ceive, predict, and plan: Safe motion planning through interpretable
semantic representations,” in European Conference on Computer Vi-
sion, pp. 414–430, Springer, 2020.

[19] R. Liu, J. Wang, and B. Zhang, “High definition map for automated
driving: Overview and analysis,” The Journal of Navigation, vol. 73,
no. 2, pp. 324–341, 2020.

[20] B. Yang, M. Liang, and R. Urtasun, “Hdnet: Exploiting hd maps for
3d object detection,” in Conference on Robot Learning, pp. 146–155,
PMLR, 2018.

[21] H. Cai, Z. Hu, G. Huang, D. Zhu, and X. Su, “Integration of gps,
monocular vision, and high definition (hd) map for accurate vehicle
localization,” Sensors, vol. 18, no. 10, p. 3270, 2018.

[22] F. Ghallabi, F. Nashashibi, G. El-Haj-Shhade, and M.-A. Mittet,
“Lidar-based lane marking detection for vehicle positioning in an hd
map,” in 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC), pp. 2209–2214, IEEE, 2018.

[23] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, pp. 1–16, 2017.

[24] “Nvidia drive mapping.” https://developer.nvidia.com/
drive/drive-mapping.

[25] “Here hd live map.” https://www.here.com/platform/
automotive-services/hd-maps.

[26] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009.

[27] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference (G. Varoquaux, T. Vaught, and
J. Millman, eds.), (Pasadena, CA USA), pp. 11 – 15, 2008.

[28] R. Gutiérrez, E. López-Guillén, L. M. Bergasa, R. Barea, Ó. Pérez,
C. Gómez-Huélamo, F. Arango, J. Del Egido, and J. López-Fernández,
“A waypoint tracking controller for autonomous road vehicles using
ros framework,” Sensors, vol. 20, no. 14, p. 4062, 2020.

[29] “Nhtsa typology.” https://www.nhtsa.gov/.
[30] C. Gómez-Huélamo, D.-D. Alejandro, M. E. Ortiz, R. Gutiérrez,

F. Arango, J. Araluce, A. Llamazares, and L. M. Bergasa, “How to
build and validate safe and reliable autonomous driving stacks? a ros
based software modular baseline,” in 2022 IEEE Intelligent Vehicles
Symposium (IV): In submission, IEEE, 2022.

