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Abstract— Predicting driver’s attention in complex driving
scenarios is becoming a hot topic due to it helps the design
of some autonomous driving tasks, optimizing visual scene
understanding and contributing knowledge to the decision
making. We introduce ARAGAN, a driver attention estimation
model based on a conditional Generative Adversarial Network
(cGAN). This architecture uses some of the most challenging
and novel deep learning techniques to develop this task. It fuses
adversarial learning with Multi-Head Attention mechanisms.
To the best of our knowledge, this combination has never
been applied to predict driver’s attention. Adversarial mecha-
nism learns to map an attention image from an RGB traffic
image while mapping the loss function. Attention mechanism
contributes to the deep learning paradigm finding the most
interesting feature maps inside the tensors of the net. In this
work, we have adapted this concept to find the saliency areas
in a driving scene.

An ablation study with different architectures has been
carried out, obtained the results in terms of some saliency
metrics. Besides, a comparison with other state-of-the-art mod-
els has been driven, outperforming results in accuracy and
performance, and showing that our proposal is adequate to be
used on real-time applications. ARAGAN has been trained in
BDDA and tested in BDDA and DADA2000, which are two
of the most complex driver attention datasets available for
research.

I. INTRODUCTION

Intelligent vehicles have reached multiple advances in
recent years with the goal of achieving the fully autonomous
driving architecture, defined as the fifth level (L5) according
to the J3016 SAE international Standard [1]. L5 architectures
are divided into different tasks to fulfill the outstanding goal
of autonomous driving. This work is focused on visual scene
understanding, which includes tasks as pedestrian/vehicle
detection and tracking, signs/traffic lights recognition or
semantic segmentation. But, do autonomous vehicles need
to detect all the objects on the scene or just only the ones
that affect them? Do humans recognize the complete scene
when they are driving or just a few objects?

Humans keep their visual attention on the most saliency
objects in order to focus their attention on a potential
hazard and be aware of the traffic situation to be able to
make decisions over it. Human attention is a fusion of two
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mechanisms, bottom-up (color or intensity) and top-down
(goals or intention) [2], [3]. This fusion enables drivers to
focus their attention only on the necessary objects to get
the sufficient information to make decisions [4], [5]. This
concept transferred to the task proposed here, optimizes the
visual scene understanding [6], saving computational efforts
when the vehicle is driving in a complex scenario [7].

Fig. 1: ARAGAN framework. Generator, Discriminator and
the flow of the information generated by these two nets is
represented.

Driver gaze focalization has been used to obtain driver’s
attention. Recently some datasets have been published to
explore this field in intelligent vehicles. The first one to
come out was DR(eye)VE dataset [8], which recorded and
annotated 550,000 frames of driving sequences in different
traffic and weather conditions. Every frame provides the
driver’s gaze obtained through an accurate eye tracker while
driving. After that, Berkeley DeepDrive Attention (BDD-A)
[9] dataset was launched, claiming that it is nearly impossible
to collect enough driver attention data for crucial events
with a conventional in-car data collection protocol, like
DR(eye)VE project did. This protocol only captures a single
focus and false positive gazes, which will confuse the model
during training. To overcome this concern, they proposed
an in-lab recorded dataset after a number of experienced
drivers were looked. With this new protocol, DADA-2000
dataset [10] came out, which enabled annotating critical
accidental situations with this mechanism. This collected
658,476 frames from accidents and annotated them using
an in-lab protocol with experienced driver’s gaze to obtain
their attention. From our knowledge, the referenced datasets
are the only ones that tackle driver attention and are public
nowadays. Many works have been focused on obtaining
driver’s attention through deep learning models trained on
these datasets. More competitive proposals are based on
conditional Generative Adversarial Nets (cGANs) [11].

The release of Transformers [12] supposed a change in
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the deep learning paradigm regarding attention mechanism
because allowed multi-head attention in an effective way.
This technique, firstly used to outperform Natural Language
Processing (NLP) models, has recently been implemented in
computer vision applications. There are several works that
have overcome state-of-the-art results. This is the case of
[13], that presents a Transformer architecture tested on dif-
ferent benchmarks including image-level classification [14],
region-level object detection [15] and pixel-level semantic
segmentation [16].

This work presents a driver attention estimation model
based on a conditional Generative Adversarial Net (cGANs)
[17], which is a network that learn to map an image of
distribution (b) from an image of distribution (a) mapping
a loss function during training. cGANs differ from GANs
[18] in the fact that a condition is fed to the generator
and the discriminator instead of using random noise. In
our case, this feeding is an RGB image extracted from
traffic scene. Besides, cGAN generator uses the encoder of
a Transformer providing our architecture with Multi-Head
Attention capacity. To the best of our knowledge this is the
first time that these two techniques (cGAN and Transformer)
have been used together to predict driver’s attention.

The main contribution of this work is our novel and
efficient architecture, which could be used in real-time ap-
plications, as well as its high performance, surpassing results
obtained by other state-of-the-art proposals on open-source
datasets.

II. RELATED WORKS

In recent years, prior efforts have been made in the
literature to get driver attention models using computer
vision techniques. Moreover, some new Deep Learning (DL)
techniques have been used in intelligent vehicle applications.

A. Driver attention models.

Research has been conducted in the field of fixation
models based on computer vision for some years using DL
techniques [19], [20] and [21]. These are the first ranked
models on the MIT300 [22] benchmark. On the other hand,
[23] and [24] are the first ranked models on the CAT2000
[25] benchmark. However, it was not until the release of the
DR(eye)VE dataset [8] that these models started to be used
in intelligent vehicles scenarios.

With this release, several DL models were trained on
this dataset, including the one proposed by the authors in
[8], which was based on a multi-branch architecture. Three
different branches (RGB, Flow estimation and Semantic
Segmentation) composed the model and were fused to obtain
the attention prediction. Other trained models were proposed
on [2], [26] and [27].

After this dataset, Berkeley DeepDrive Laboratory
launched its Berkeley DeepDrive Attention dataset (BDD-
A) [9], which not only proposed a new protocol to estimate
driver’s attention but obtained the peripheral vision, since
humans have the ability to fixate their gaze on an object
while attending others. To include this functionality authors
propose using more than one observer to capture the attention

map. They presented their dataset and a model trained on
it. The proposed model used a feature extractor based on
ImageNet and pre-trained in AlexNet [28]. The input was
based on 6 consecutive frames with a temporal processing
unit in the form of 2D convolutions and Convolutional LSTM
(Conv2D-LSTM).

With this new protocol, another dataset came out,
DADA2000 [10], which not only proposed a new dataset
based on accidents but also proposed an architecture to
predict driver’s attention [29]. This model is based on a
multi-branch architecture with a semantic-guided attentive
fusion to predict the attention map from the RGB image
and the semantic segmentation. Like its predecessors, this
model used a sequence of images as input with Convolutional
LSTM (Conv2D-LSTM).

In recent years, there have been other works that aimed
to be different from the state of the art models in this field.
Authors of [30] proposed a Maximum Entropy Deep Inverse
Reinforcement Learning model to predict visual attention
on driving scenarios. They also announce a dataset to be
tested by the community, but it is not completely public.
They predict the eyes’ movement, which is the action of
their inverse reinforcement learning model.

B. Deep learning techniques.

In order to build the application described earlier some
DL techniques have been proposed. Adversarial learning was
proposed in [18], which gives the ability to learn to generate
a data distribution (Generator) and a discriminative model
(Discriminator) that learns to estimate if a sample came from
the ground truth or it has been generated by the Generator.
This training procedure corresponds to minimax two-net
game. Image to image generation has been a topic developed
in the DL field for a long time, but it was not until [31]
came out that it was investigated with conditional adversarial
networks. They proposed an architecture to solve different
image processing problems with a generator based on the
U-Net [32] and a Markovian discriminator denominated
PatchGan.

Driver’s attention through adversarial learning has recently
been presented in [11], which is based on the architecture
described in [31].

Apart from adversarial learning, there is another tide that
is changing the DL paradigm, the Multi-Head Attention.
Because not all the stimuli are equal, focus attention has
enabled the human species to direct attention to objects
of interest, such as preys and predators have been doing
in the complex visual environment during history. Finding
the saliency regions of a traffic scene making the most of
Transformers [12], which allow efficient Multi-Head Atten-
tion capability, is the key aspect of this work.

Before this architecture, there were some others that
estimated attention. The mostly used ones were additive
attention [33], and dot-product (multiplicative) attention [34].
There are different approaches that have implemented Trans-
formers for computer vision tasks, despite they were firstly
designed to be used in NLP tasks. In [35], they used an



attention module based on a Channel Attention ‘what to pay
attention’ and a Spatial Attention ‘where to pay attention’.
This implementation was based on the work proposed in
[36], which implements channel attention in a different way.
These works show progress in using attention mechanisms
in computer vision tasks. But they did not end up using the
Transformer. In [37], Self-Attention is employed to model
an adversarial learning that was tested on the ImageNet-
1K [14] dataset. Self-Attention is the base of the work
proposed on [12] but still needs some modifications to
explore the Transformers’ capability. Finally, [13] presented
a work where the Transformer was used for computer vision
tasks. They tested and got state of the art results on different
benchmarks, such as, ImageNet-1K image classification (V1
and V2) [38], [39], COCO object detection [15], ADE20K
semantic segmentation [40] and Kinetics-400 video action
classification [41].

There is a recent work [42] that has presented a driver
attention model using the fusion of Transformers and con-
volutions. This model has been trained on BDD-A but
obtains worse performance results that the obtained with our
proposal in the same test dataset.

After this literature revision and to the best of our
knowledge, we can claim that the architecture proposed
here is the first that fuse the novel DL techniques cGANs
and Transformers to predict driver’s attention for real-time
intelligent vehicles applications.

III. ARAGAN ARCHITECTURE

Taking novel state-of-the-art DL techniques (cGANs and
Transformers), we proposed ARAGAN architecture for
driver’s attention estimation. ARAGAN improves state-of-
the-art results, opening the possibility to perform real-time
applications due to the efficiency of our architecture. Figure
1 shows the framework of our proposal, where the Generator,
Discriminator and the information flow generated by these
two nets is represented. Then, loss function calculation is
included in a graphical way.

Based on the Pix2Pix architecture [31], which presents a
cGAN that learns from an image to obtain another image,
we propose to use conditional adversarial learning for driver
attention prediction. We feed the network with a RGB image
of the traffic scene, expecting to obtain a predicted attention
map over the image. The Generator predicts “fake” attention
maps that cannot be distinguished from the “real” ones by
the Discriminator, which is trained adversarially to identify
these synthetics attention maps. Both nets apply the gradients
at every batch.

Hereafter, we present the learning strategy applied in our
system, the different attention modules used in the Generator
design, as well as the architectures propose for the Generator
and the Discriminator.

A. Adversarial learning procedure

Loss function of a cGAN is shown in Equation 1 where
the Generator (G) tries to minimize the function and the
Discriminator (D) aims to maximize it,

LcGAN = Ex,y[logD(x,y)]+Ex,z[log(1−D(G(x,z))] (1)
being x the RGB image, y the driver attention estimation

and z a random noise. This logic is based on what authors
claimed in [31]. We have removed the random noise added
to the input image as the generator learns to avoid the noise
as exposed in [43]. Namely, we have provided the net with
a dropout that provides noise to it, without jeopardizing the
input. Besides, we have added to the function a L1 distance,
represented in Equation 2. It is based on the work presented
in [44], where they claim that adding a traditional loss to the
Generator benefits its performance.

LL1(G) = Ex,y,z[y−G(x,z)||1] (2)
With this said, the final loss function for our architecture

is shown in Equation 3.
G∗ = argmin

G
max

D
LcGAN +λLL1(G) (3)

B. Attention modules

In this subsection, we introduce the different attention
modules used in the Generator design.

1) Convolutional Block Attention Module (CBAM): This
module was proposed in [35]. With an intermediate feature
map, this architecture infers attention in two ways, channel
(“what to pay attention”) and spatial (“where to pay atten-
tion”). Figure 2 shows the architecture of this module. The
Channel attention (Mc) is done as shown in Equation 4 and
the Spatial attention (Ms) as exposed on the Equation 5.

Mc(F) = σ(MLP(AvgPool(F))+MLP(MaxPool(F))) (4)
In Equation 4, σ denotes the sigmoid function and MLP is

a shared multi-layer perceptron of one hidden layer with an
activation size set to RC

r x1x1, where r is the reduction ratio.

Ms(F) = σ( f 7x7([AvgPool(F); MaxPool(F)])) (5)
In Equation 5, σ denotes the sigmoid function, and f 7x7

is a convolutional layer with a kernel size of 7x7.

Fig. 2: Convolutional Block Attention Module (CBAM).

2) Self-Attention: After CBAM, we used the Self-
Attention module [37], which has been claimed in the
literature as one of the best attention procedures when all
the information comes from the same input. This module is
represented in Figure 3. The input feature map experiences
three transformations. The first two are query (q) and key (k),
which are used to calculate the attention, where q(x) = f 1x1

q x
and k(x) = f 1x1

k x. With these two feature maps, Equation 6
learns to attend to the ith location (pixel) when synthesizing
the jth region, building the attention map of the module.



β j,i =
exp(si j)

∑
N
i=1 exp(si j)

, where si j = q(xi)
T k(x j) (6)

The output layer of the attention (Equation 7) has the form
of o = (o1,o2, ...,o j, ...,oN) ∈ RCxN , where C is the number
of channels of the input feature map and N is the number of
feature locations from the previous hidden layer. This output
is calculated after a matricial product of the attention layer
(β j,i) and the last transformation values (v) experienced by
the input.

o j = f 1x1
h (

N

∑
i=1

β j,iv(xi)), where v(x) = f 1x1
v x (7)

Convolution operations, with kernel size of 1, are done to
extract the feature maps. These operations are the following
ones: f 1x1

q , f 1x1
k and f 1x1

v ∈ RC/rxC, where r is a decreasing
factor to increase efficiency without compromising perfor-
mance, and f 1x1

h ∈ RCxC.
yi = γoi + xi (8)

Additionally, we multiply the output by a learnable scalar
γ and add the feature input as a residual connection, as can
be seen on Equation 8. This scalar is initialized to 0 to
provide the network with the ability to firstly rely on the
local neighborhood and then assign more weight to the non-
local evidence.

Fig. 3: Self-Attention module

3) Multi-Head Attention module: This module imple-
ments a Multi-Head Attention mechanism through a Trans-
former encoder defined in [12]. Its architecture can be seen
in Figure 4. To build the Multi-Head Attention mechanism,
M Self-Attention modules, as the above described, are con-
catenated, which acts as heads in this new architecture. These
concatenated feature maps are fused through a convolutional
layer f 1x1 followed by a residual connection and a normal-
ization layer. This mechanism is shown in Equation 9.

MultiHead(xi) = f 1x1
o (Concat(head1,head2, . . . ,headM))

where headi = γoi + xi
(9)

Fig. 4: Multi-Head Attention module.

C. Generator architecture.

Using the different attention modules and the learning pro-
cedure explained above, as well as a Residual convolutional
module with and without stride as the presented in Figure 5,
we are ready to tackle the Generator design.

Firstly, a Generator presented in [31] and based on U-Net
[32] was implemented. It is an encoder-decoder architecture
built by convolutions with skip connections between mir-
rored layers of the encoder and the decoder. This architecture
is a great option for many image to image problems, as
information of the input is shared with the output. For
example, in semantic segmentation, the output has the same
objects shape as the input, so this information could be
passed in early steps of the network instead of vanishing it
with a deeper network. This information is not so important
in our application as the shapes are not maintained. The
encoder is built with convolutional modules, which are made
up of a Convolutional layer f 3x3, a dropout of 0.5 and a Relu
activation function. The decoder is made up of upsample
modules that are composed of a Convolution Transpose,
Batch Normalization, a dropout of 0.5 and a Leaky-Relu
activation function. The input is a 256x256 RGB image and
the output an 256x256 attention map. These sizes are the
same in all implementations. This is the first Generator for
our model and will be treated as a baseline and a proof of
what we can achieve in the driver attention estimation with
an adversarial training.

In our second proposal, we change the convolutional part
of the previous Generator for an encoder based on CBAM.
The proposed Generator is composed of a first stage module
with a convolutional layer ( f 7x7), Batch Normalization, a
Relu activation function and a Max Pooling ( f 3x3) with stride
= 2. After that, sixteen CBAMs modules as the explained
before (Figure 2) are used. The odd ones have stride = 1
and pairs ones have stride = 2. Afterwards, a decoder is
implemented to upsample the feature maps obtained to get
the final output as a 256x256 attention map.

Our third approach is based on Self-Attention mechanism
(Figure 3). This generator configuration is a fusion of Resid-
ual convolutional downsample modules (Figure 5) with a



(a) Residual convolotutional module
(Resblock) with stride = 2 for di-
mension reduction.

(b) Residual convolotutional module
(Resblock) with stride = 1

Fig. 5: Residual convolotutional modules used as image
feature extractor.

Self-Attention module. It has the same stride configuration
as the CBAM-based Generator. After downsamples and
feature extraction are conducted, a Self-Attention module is
implemented to extract the most interesting characteristics of
these feature maps. This is made to feed the decoder with
this key information to obtain the final output as a 256x256
attention map.

Our final proposal takes advance of a Transformer encoder
to provide architecture with Multi-Head Attention capability
in an efficient way. We have convolutional steps based on
Resblocks downsample (Figure 5(a)) and deconvolutional
steps that follow the same architecture as the previous
tested models. We add some Transformer encoder modules
at different steps of the downsample procedure to test the
benefits of this architecture.

D. Discriminator architecture

Due to the adversarial training, an additional net is re-
quired to complement the Generator. This net has been built
following the implementation explained in [31]. In this work,
they proposed the use of a convolutional PatchGAN classi-
fier, previously introduced in [45]. This classifier, instead
of classifying between “real” or “fake”, for the full image,
classifies NxN patches, where N is much smaller than the
image size. Among its benefits, it gives the possibility for a
Discriminator with less parameters, which trains faster and
uses larger images.

We concatenate the two feeded images and pass them
through some convolutional steps, to end up with the patch
classification.

IV. EVALUATION METRICS

To evaluate the proposed models, we have used some
evaluation metrics applied in saliency models, which are
collected and explained in [46]. From the cited metrics, we
will use in our experiments the following: Kullback-Leibler
Divergence (KLD), Pearson’s Correlation Coefficient (CC)
and shuffled Area under the ROC curve (s-AUC). Hereafter,
we briefly explain each of them.

Kullback-Leibler Divergence (KLD) shows the difference
between two probability distributions. Equation 10 shows
this metric where the distributions are P and QD, and ε is
a regularization constant. In our case, the two comparing
distributions correspond to the generated output and the
Ground Truth attention map, respectively.

KL(P,QD) = ∑
i

QD
i log(ε +

QD
i

ε +Pi
) (10)

The Pearson’s Correlation Coefficient, CC, also called Lin-
ear Correlation Coefficient, is a statistical method generally
used to measure how correlated or dependent two variables
are. CC can be used to consider saliency and fixation maps,
P and QD, as random variables to measure their linear
relationship. Equation 11 shows how it is calculated:

CC(P,QD)) =
σ(P,QD)

σ(P)×σ(QD)
(11)

,where σ(P,QD) is the covariance of P and QD.
Shuffled Area Under the ROC Curve (s-AUC) is a modifi-

cation of the Area Under ROC Curve (AUC), which has been
one of the most used metrics in saliency. The s-AUC assumes
that the center bias has not been modeled, and penalizes
models where this happened. This metric penalizes when the
model only predicts the attention map on the center of the
image, due to it is the common area to pay attention.

V. EXPERIMENTS

This section present results obtained for the different
proposals. It is divided in two main experiments. Firstly, an
ablation study was carried out to test our cGAN architecture
with different Generator models. Secondly, the best model
has been compared with other state-of-the-art proposals in
order to evaluate its real contribution. Architectures were
trained using Adam optimizer with a declining learning rate
and parameters β1 = 0.5, β2 = 0.999. Using a Batch size of
8. The GPU used for all the experiments described below is
the NVIDIA 2080 Ti with 11GB of VRam. Both experiments
have been quantitatively analyzed with the metrics exposed
above. Some qualitative results will be shown at the end of
this section to give a graphical view of the performance of
our work.
A. Ablation study

All architectures were trained for 15 epochs on the BDDA
training set dataset. Images and attention maps were resized
to 256x256. After the training procedure, a testing step was
carried out. This testing was done in two different datasets.
Firstly, the BDDA testing set was used, to continue with the
DADA-2000 testing set, which is composed of accidental
scenarios.

Table I shows some different metrics. It is divided into:
accuracy metrics (KLD, CC and s-AUC) and performance
metrics (Training time and inference frequency). Perfor-
mance metrics are not normally evaluated in the literature,
but for us, it is a key concept that needs to be evaluated, as
it proves the ability of the model to work during inference
in real-time. For that, we present training time and inference
frequency.

We are gonna evaluate different proposals for the down-
sample section of the Generator: U-Net (baseline), CBAM,
Self-Attention (SA) and Multi-Head Attention (MHA).

Results show that the best model is the combination of the
residual modules with the Multi-Head Attention module for
the downsample section of the Generator, achieving the best



Fig. 6: Qualitative results for the model proposed using the combination of Residual modules + Multi-Head Attention.
TABLE I: Ablation study performed using adversarial learning with different generators configuration. All models have been
trained in BDDA and testing in BDDA and DADA2000.

Generator
Performance metrics Training performanceBDDA dataset DADA dataset

KLD ↓ CC ↑ s-AUC ↑ KLD ↓ CC ↑ s-AUC ↑ Training Time Inference (Hz)
U-Net 0.44 0.91 0.54 0.43 0.94 0.55 10h 45m 25s 7.70
CBAM 0.27 0.92 0.68 0.27 0.94 0.69 6h 12m 39s 7.67

Resisual modules + Self-Attention 0.13 0.87 0.71 0.22 0.96 0.70 5h 26m 24s 8.70
Residual modules + Multi-Head Attention 0.05 0.92 0.66 0.10 0.97 0.65 6h 30m 52s 10.53

performance in both datasets for all metrics except for s-AUC
and training time, where using the Self-Attention module
gives the best values. Moreover, the use of attention modules
has decreased the training time, which is an important fact
in terms of research purposes.
B. Comparison with other state-of-the-art models

The best model obtained in the ablation study is com-
pared with some other popular driver attention estimation
implementations. Results are shown in Table II. Our pro-
posal obtains better performance results than the referenced
implementations in the two challenging datasets for KLD
and CC metrics. And it is on par with the best one evaluated
in s-AUC. Moreover, unlike most proposals of the literature,
our application shows inference times that can be used in
real-time applications.

Figure 6 shows qualitative result for our model, the
images are displayed in the following order: the first row
is composed by the RGB image, the second one by the
RGB image with the ground truth (humans fixations) and the
third one is the RGB image with the ARAGAN’s predicted
attention map.

VI. CONCLUSIONS AND FUTURE WORKS

We presented ARAGAN, a novel architecture that com-
bines adversarial learning with Multi-Head Attention, two
of the most advanced techniques in DL, to obtain driver
attention estimation.

Our proposal outperforms state-of-the-art results in a
comparison experiment with other popular models in two
different challenging datasets (BDDA and DADA2000). An
extensive study of different architectures for the Generator
design and the results obtained for each of them in the refer-
enced datasets have been presented. This architecture enables

the use of driver’s attention in real driving applications due
to its low inference time, and may be helpful in the design
of autonomous vehicles.

For future works, we plan to explore the use of positional
encoding at the beginning of the Transformer module, as
well as the implementation of a Transformer decoder, which
has not been tackled in this work. Moreover, we plan
to test ARAGAN in real environments using our electric
autonomous vehicle.
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