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Abstract— The implementation of Autonomous Driving
stacks (ADS) is one of the most challenging engineering tasks of
our era. Autonomous Vehicles (AVs) are expected to be driven
in highly dynamic environments with a reliability greater than
human beings and full autonomy. Furthermore, one of the most
important topics is the way to democratize and accelerate the
development and research of holistic validation to ensure the ro-
bustness of the vehicle. In this paper we present a powerful ROS
(Robot Operating System) based modular ADS that achieves
state-of-the-art results in challenging scenarios based on the
CARLA (Car Learning to Act) simulator, outperforming several
strong baselines in a novel evaluation setting which involves
non-trivial traffic scenarios and adverse environmental condi-
tions (Qualitative results). Our proposal ranks in second po-
sition in the CARLA Autonomous Driving Leaderboard (Map
Track) and gets the best score considering modular pipelines,
as a preliminary stage before implementing it in our real-
world autonomous electric car. To encourage the use research in
holistic development and testing, our code is publicly available
at https://github.com/RobeSafe-UAH/CARLA Leaderboard .

Keywords: Autonomous Driving, Modular, Simulation,
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I. INTRODUCTION
In spite of all impressive efforts in the development of

autonomous driving technology [1], fully-autonomous driv-
ing stacks (ADS) in arbitrarily complex scenarios are still
years away. The reason for this is two-fold: Firstly, informed
decision-making requires accurate perception. Most existing
perception pipelines produce errors at a rate not acceptable
for autonomous driving. Secondly, ADS that are operated
in complex dynamic environments will require Artificial
Intelligence based intelligent systems in order to generalize
to unpredictable situations and reasons in a timely manner,
even more considering the possible infractions committed by
other vehicles on the road.

ADS combine a wide range of software components and
sensors (both online and offline information) that once are
processed are useful for the vehicle to make decisions and
take actions [2]. In that sense, online information, also known
as the traffic situation, is obtained by using the global percep-
tion system of the vehicle, which involves different on-board
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sensors (such as Light Detection and Ranging (LiDAR),
Global Navigation Satellite System (GNSS), Camera, Inertial
Measurement Unit (IMU) or actuators state) in order to
create an accurate representation of the current situation to
understand the surrounding environment and estimate the
ego-vehicle location in real-time. On the other hand, offline
information is identified as the prior knowledge of the ADS,
such as the geographic and semantic information, as well as
the topological relations of the environment based on high-
definition maps [3], the vehicle dynamic and the traffic rules
based on behavioural decision-making systems [4].

Fig. 1: Simulation example of our Autonomous Driving stack using the
RVIZ (ROS visualization) tool.

Furthermore, testing autonomous vehicles on public roads
is an expensive and time-consuming endeavor. In order to
validate an ADS the system must be tested in countless
scenarios and environments, which would escalate the cost
and development time exponentially with the physical ap-
proach. Considering this, the use of photo-realistic simulation
and an appropriate design of the evaluation metrics and
driving scenarios are the two current keys to build safe and
reliable ADS. Simulation as a form of accelerating the path to
market is not new to the AD industry. Tesla, Cruise, Waymo,
Aurora, TuSimple and others have all touted the benefits of
using simulations made from real-world data to test their
AV systems, particularly against made-up scenarios that the
systems have not encountered and cataloged in the real world
yet.

The scope of this paper is to introduce the workflow by
the RobeSafe research group (University of Alcalá, Spain) to
build and validate an ADS, which achieves state-of-the-art
results in challenging scenarios based on the CARLA sim-
ulator [5], outperforming several strong baselines in a new
evaluation setting which involves non-trivial traffic scenarios
and adverse environmental conditions , as a preliminary stage
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before implementing it in our real-world autonomous electric
car. We hope that our distributed system can serve as a solid
baseline on which future research can build on to advance
the state-of-the-art in validating fully-autonomous driving
architectures using hyper-realistic simulation.

II. RELATED WORKS

As mentioned in Section I, a fully ADS (L5 in the J3016
SA [6]) is still years away, not only for technical challenges,
but also due to social and legal ones [7]. So far, no industry
organization [4] has shown a ratified testing methodology for
L4/L5 SAE autonomous vehicles. The autonomous driving
community gives a simple reason: despite the fact that
some regulations have been defined for these levels and
current automotive companies/research groups are very good
at testing the individual components of the AD architecture ,
there is a need to test AVs full of advanced sensors [8] using a
holistic approach, where not only the individual components
but also the general behaviour of the architecture is evaluated.

Regarding urban environment complexity, to validate an
ADS the system must be tested in countless scenarios
and environments, which would escalate the cost and de-
velopment time exponentially with the physical approach,
particularly against made-up scenarios that the system has
not encountered and cataloged in the real world yet. Since
the instrumentation of an experimental vehicle still has a high
cost and conducting experiments on public road networks are
highly regulated, the use of photo-realistic simulation envi-
ronments and the design of challenging traffic scenarios are
the two current keys to build safe and reliable ADS [8]. These
simulators have evolved from merely simulating vehicle
dynamics to also simulating more complex functionalities.
In order to choose the right simulator [4], there is a set of
criteria [9] that serve as a metric to identify which simulators
are most suitable for our purposes, such as traffic infrastruc-
ture, sensors available, multi-view geometry, vehicle control,
traffic scenario simulation, 2D/3D groundtruth, 3D virtual
environment, open-source and scalability via a server multi-
client architecture. Most private companies (Waabi, Tesla,
Waymo, TuSimple, NVIDIA, etc.) use their private simula-
tion, where free-to-use license is not available and derivative
products are not allowed. For the open-sourced options [9],
we can find Gazebo, CarSim, CARLA and LGSVL. At the
moment of writing this paper, LGSVL and CARLA are
the most suitable simulators for holistic simulation (either
modular or end-to-end approaches). Most of their features
are identical but LGSVL does not offer camera calibration to
conduct multi-view geometry or Multi-Modal fusion for end-
to-end training, which are some of our future works. Then,
we decided to use the CARLA [5] simulator. Additionally,
this last offers a leaderboard where teams can evaluate their
approaches on secret test routes on the cloud.

Regarding AD archtectures, end-to-end and modular
pipelines continue to be the dominant approaches to this day.
End-to-end driving is defined as performing the entire driving
task by a single neural network that takes in the raw sensor
data and outputs the driving (steering, throttle and brake)

commands. The main advantage of these approaches is that
intermediate representations are jointly optimized for the
driving task and supervision labels may be obtained cheaply.
However, these methods are not very interpretable. Some
end-to-end approaches are compared in Section IV with
our modular architecture. On the other hand, in the module
pipeline approach, the driving task is separated into indi-
vidual modules that are programmed or trained individually.
They are often classified as localization, mapping, planning,
perception, decision-making (or executive) and perception
layer respectively. One of the greatest advantages of using
modular pipelines is that intermediate representations are
specified by an expert and hence they are interpretable. More-
over, these different modules can be effectively developed in
parallel by a large team, in such as way the modular pipeline
approach has become the standard approach in industrial
research. Nevertheless, these intermediate representations
can led to suboptimal performance and may not be optimized
for the final driving task.

Open-source modular frameworks are very useful for both
researchers and the automation industry, and they can help
to democratize AD development. Pylot [10] is an interesting
modular approach, being the first modular architecture to
be ranked in the CARLA Autonomous Driving Leaderboard
(CADL). Autoware, Openpilot and Nvidia Drive-Works are
amongst the most used software-stacks [1] capable of run-
ning an AD platform in real world. However, they do not
follow a common standard and are incompatible with each
other. Besides, they are not very flexible, difficult to adapt to
some types of sensors/actuators and have restrictions to be
transferred to real potentially marketable vehicles. Regarding
this, we finally consider to develop our own modular ADS
(see Section III) based on ROS [11], Docker [12] and
CARLA.

III. AUTONOMOUS DRIVING STACK

To accomplish the AD development and validation, we
present a workflow (Fig. 2) that uses the CARLA simula-
tor to validate our AD approach. Traditionally, a layered
(modular) architecture pattern [2] establishes a hiearchical
and topological organization of the software components
with a similar abstraction level. The communication among
them can be classified as inter-layer and intra-layer, us-
ing the publish/subscribe paradigm to provide non-blocking
communications. The former means the communication of
software components (ROS nodes in this case) of different
layers while the latter means the communication of nodes
belonging to the same layer. ROS is featured by a well-
defined communication protocol, that allows the replacement
of specific components or even the entire layer, keeping the
core system behaviour, being one of the main advantages
of modular pipelines. Using this paradigm, in addition to
the encapsulation of the ADS using Docker reinforces the
scalability, reusability, maintanability and modularity of the
ADS style among the different members of our team. In
particular, our ADS is hierarchically broken down in the fol-
lowing layers: Localization, Mapping, Planning, Perception,



Fig. 2: Our Autonomous Driving Stack Workflow. Three main blocks are identified: the CARLA simulator block, which provides the raw data and
receives the driving commands, the ADS block, which receives the raw data information and processes the traffic situation to commit the least number of
traffic infractions , and the Evaluation Stack block that receives the architecture encapsulated as a Docker, and validates the ADS first in local inference
as a preliminary stage before submitting it to the CARLA Autonomous Driving Leaderboard (CADL)

Decision-Making and Control.

A. Localization layer
Accurate and robust localization is a primary task for our

autonomous navigation architecture. This layer is responsible
for two core tasks in the architecture. Firstly, publishing
the transform tree that connects all frames, and secondly
positioning the ego-vehicle in the map. When locating the
vehicle, it is mandatory to use the correct reference sys-
tem, taking into account the ego-vehicle reference and how
the different sensors or elements of interest are distributed
around it. Each of these points around the vehicle has
its particular frame, and it is required that all frames are
connected using a transform tree, which allows ROS to
compute the transforms among frames in a very efficiency
way, being this one of the most powerful features of ROS.

As observed in Fig. 3, we estimate the ego-vehicle pose
fusing the geographic position provided by a GNSS (Global
Navigation Satellite System) and the orientation provided by
an IMU. The GNSS sensor provides the measurements in
World Geodetic System (WGS84) coordinates. Nevertheless,
to simplify the localization problem, we use UTM (Universal
Transverse Mercator) coordinates, since working with dis-
tances is easier that using a Cartesian system. In this case,
we use the same conversion than proposed by the CARLA
simulator.

To obtain the ego-vehicle orientation, we use the compass
provided by the IMU. Nevertheless, a transformation is
applied to estimate the heading orientation (θz) based on the
Northing (N) value.

Furthermore, in order to reduce the noise associated to the
GNSS and IMU measurements (which are set specifically in
CARLA), we use an Extended Kalman Filter (EKF) [13], as
illustrated in Fig. 3.

Fig. 3: Localization pipeline based on an Extended Kalman Filter (EKF)
fed by the heading angle and UTM coordinates

B. Planning layer

In order to start the navigation, our ADS first calculates the
optimal global route given the current position of the ego-
vehicle and a goal. This task is done by the path planner,
which calculates the global route as a list of waypoints
centered in the lanes using the Dijkstra algorithm [14]. A
waypoint represents a 3D oriented point with location (x,y,z),
rotation (roll,pitch,yaw) and the corresponding topological
information, such as the road speed or if that waypoint is
inside an intersection. Considering this, the Planning layer
is divided into two main modules: Lane Graph Planner (LGP)
and Lane Waypoint Planner (LWP).

1) Lane Graph Planner: The LGP generates a directed
graph (DiGraph) of roads and lanes. The LGP builds the
graph using edges, that represent the connection between
two nodes. In this case a node is a tuple of 2 parameters:
road id and lane id. Each edge is defined as a Python set
containing the input node, output node and weight. The
weight represents the cost that will be used by the graph
planner for going from the input node to the output node. In
this case the weights used are road lengths in meters and time
to travel the road in seconds calculated using the maximum



Fig. 4: Monitored lanes, global route and regulatory elements are represented
in RVIZ. Non-relevant traffic lights are painted in grayscale

speed allowed for each segment. To generate the edges and
build the graph, the LGP evaluates connections for every
road/lane of the map object parsed from the HD map. Lane
change is also considered adding a cost value for lane change
when it is allowed. Once we have the road graph, the route
is calculated using the Dijkstra algorithm. The route returned
by the LGP is a topological route as a list of tuples: (road,
lane, action).

2) Lane Waypoint Planner: Given the topological global
route calculated by the LGP, the LWP module is in charge of
calculating a list of waypoints separated by a given distance
specified by the user for every road-lane calculated by the
LGP. For doing that, it uses the road-lane geometries derived
from the HD map and applies mathematical discretization in
such a way the output of this module is set of waypoints
separated by a distance d.

For a deeper explanation we remit the reader to [15].

C. Mapping layer

This layer analyzes the prior knowledge of the vehicle. It is
divided in two main modules: map parser and map monitor.
The map parser is in charge of parsing and processing the
HD map input and providing useful information (such as the
monitored lanes or the current traffic light ) to the other layers
of the vehicle, like the Planning or Perception. On the other
hand, the map monitor module is the module responsible
for monitoring the surrounding area of the vehicle and
visualizing in RVIZ (ROS visualization tool) both the lanes
describing the roads of the map and the monitored area The
map monitor inputs are the map parser output, the global
route calculated by the path planner and the ego-vehicle
location in such a way it only monitors the road infrastructure
around the ego-vehicle. As mentioned above, the monitored
area (Fig. 4) is divided into three main groups:

• Standard Lanes: Lanes available around the ego-vehicle
in all traffic situations. Current and back lane are mon-
itored from the current position, frontwards and back-
wards respectively, to a dynamic distance proportional
to the velocity of the ego-vehicle.

• Intersection Lanes: Lanes that intersect with the current
lane of the vehicle. They may have three different roles:
split (lane derived from the current lane), merge (lane

Fig. 5: Perception pipeline based on camera 2D object detection, LIDAR
3D clustering and obstacle awareness and risk assessment evaluating 3D
obstacles in the HD map

that merges with the current lane) or cross (lane that
crosses the current lane but neither its start not its end
are connected with the current lane).

• Regulatory Elements: Topological information from the
HD map, represented by the traffic signals and road in-
formation, such as the traffic lights, stops, crosswalks or
speed signals. Regulatory elements are only monitored
for the next intersection affecting the route.

More information can be found in [15].

D. Perception layer

In order to understand the environment around the ego-
vehicle, our ADS employs two perception systems to cap-
ture the traffic situation, camera and LiDAR, as well as
a map monitor module, which represents prior knowledge
and is made up by the monitored lanes (both standard and
intersection) and regulatory elements, as shown in Fig. 5.
In the present work we focus on the fusion of 3D object
detection and prior knowledge in order to study all the
benefits provided by the HD map information, giving rise to a
fast yet powerful perception node that processes the raw data
to perform obstacle awareness and risk assessment, as well
as a LiDAR based safety module, to dump this information
into the ROS communications, mainly used by the decision-
making layer to conduct the corresponding traffic behaviour.

Despite the fact there are quite interesting studies that
focus on enhancing the quality of simulated raw data, the
quality of the LiDAR pointcloud of the current CARLA
version of the CADL (0.9.10.1) is far away from the quality
offered by real-world datasets, like KITTI [16] or NuScenes
[17]. Considering our modular architecture, a Deep Learning
based 3D object detector is not suitable for our purposes.
Then, we use a simple Machine Learning based algorithm to
get the 3D clusters from the voxelized 3D pointcloud. First,
the original LiDAR pointcloud is cropped (front, back and
both sides) a distance proportional to the ego-vehicle veloc-
ity, and voxelized with a resolution of 0.3 m, giving rise to
a tradeoff between information lose and redundancy, enough
for this purpose. Then, we remove the floor using the well-
established RANSAC-3D algorithm [18] for efficient plane



extraction using a tolerance of 0.2 m to include inliers. After
that, we conduct fast nearest neighbour searches by using the
KDTree (k-dimensional tree) [19] clustering algorithm for
3D data and FLANN (Fast Library for Approximate Nearest
Neighbors), allowing for fast nearest neighbour searches to
find correspondences between groups of points.

In terms of camera information, we employ a Convolu-
tional Neural Network (CNN) known as YOLOv5 [20] (L
architecture) that computes the most relevant 2D objects for
our purposes. Traffic signs detections are used, in addition
to the output of the map monitor module, to compute the
semantic information of the current regulatory elements .
Moreover, to project the 2D obstacles into the 3D space,
as a prelimininary stage before implementing a DL based
3D detector from monocular information, we simplify the
projection stage assuming flat floor. Then, by using the
camera height with respect to the floor and the 2D detection
coordinates, the corresponding 3D projection is obtained,
which must be transformed into a common reference frame,
in this case the map frame. Once the 3D clusters are
computed, we determine whether they are relevant or not by
studying their presence in the monitored lanes (standard and
intersection lanes) to conduct the corresponding executive
behaviour, such as Adaptive Cruise Control (ACC), Stop or
Crosswalk. Studying only the most relevant obstacles helps
us to increase the reliability and robustness of our ADS since
evaluating all the objects would escalate the computational
cost in an arbitrarily complex urban scenario. Nevertheless,
the ADS may face sometimes unexpected VRUs (Vulnerable
Road Users) that may not be in a particular monitored lane
and suddenly jump into the road in non-signalized venues.
In that sense, if the obstacle is identified as VRU (cyclist or
pedestrian), we enlarge the lane a certain threshold t to the
sidewalk in order to be prepared before a possible emergency
braking, running in the decision-making layer background.

With this strategy and after conducting many experiments,
we realized that some special vehicles like the CARLA Cola
or the CyberTruck sometimes are not detected either by
the KDTree clustering or by YOLOv5-L due to its partic-
ular shape and appearance, which represents an interesting
challenge for our ADS in order to avoid the corresponding
collisions. Then, we develop a safety module, always running
in the background of the perception node, which is fed by the
voxelized 3D pointcloud and the monitored lanes in order to
study the presence of a relevant group of points which has
not been previously computed.

E. Decision-Making layer

The decision-making layer must provide tools to model the
sequence of actions and events, based on some predefined
traffic rules, that can take place in the different traffic
scenarios. Different approaches have been proposed in the
literature: Partially Observable Markov Decision Processes
(POMDPs) [21], Decision Trees (DT) [22] and Hierarchical
Finite-State Machines (HFSM) [23].

Petri Nets (PNs) are a powerful tool to design, model
and analyze concurrent, sequential and distributed systems.

While in a FSM there is always a single current state, in PNs
there may be several states that can change the state of the
PN. In that sense, we make use of Hierarchical Interpreted
Binary Petri Nets (HIBPNs) [4] to model the behaviours for
each traffic scenario, where a PN can start/stop another PN
depending on its hierarchy. We run a main PN that defines
the conditions to switch between the different behaviours
(ACC, Stop, Traffic Light, Crosswalk, etc.), modeled as a
sequence of discrete events, as well as an emergency break
behaviour, which is always running in the background. The
resulting pipeline is noticeable flexible since the user can
easily modify the traffic rules with minor changes, such as
the minimum distance to be stopped in front of an obstacle,
in the corresponding PNs. In our case, as stated in Fig.
2, the decision-making layer is fed the risk assessment
and monitors information from the perception layer and
the monitored area from the map monitor module, which
are jointly considered to conduct the top priority behavior.
Finally, the decision-making layer feeds the control layer
with the corresponding action to be carried out.

For more information about this module we remit the
readers to [4].

F. Control layer

The Control layer usually represents the final part of
every autonomous driving software stack, either end-to-end
or modular approaches. It generates the steering, throttle
and brake commands in order to keep the agent in the
planned trajectory, which are directly sent to the vehicle,
either the low-level hardware in real-world operation, or
the simulator in this case. As observed in Fig. 2, this
planned is calculated using the global planner, though it
may be recalculated if the decision-making layers requires a
local-planning action, as occur in the obstacle avoidance or
overtake situations. This layer is divided into three modules:
Waypoint interpolator, which calculate intermediate points
trough two-dimensional cubic splines to ensure continuity.
Longitudinal control, responsible for calculating the velocity
profile throughout the route as a function of the current
curvature of the road. Lateral control, module that generates
the steering signal using a Linear-Quadratic Regulator (LQR)
Optimal Controller. Deeper information can be found in [24].

IV. EXPERIMENTAL RESULTS

One of the best advantages of CARLA is the possibility to
create ad-hoc urban layouts, useful to validate the navigation
architecture in challenging driving scenarios. In the present
case, the scenarios both in local and CADL experiments are
selected from the NHTSA (National Highway Transporta-
tion Safety Administration) pre-crash typology [25], one of
the most famous NCAPs (New Car Assessment Programs).
In that sense, the CADL proposes a benchmark for the
evaluation of ADS that relies on different sets of software
architectures approaches and set of sensors, being limited by
the CARLA team . In this leaderboard, a particular ADS is
run in an arbitrarily complex environment (urban, highway,
residential district, unsigned intersections and so forth and



Fig. 6: Vehicle layout illustrating vehicle dimensions and sensor suite

so on), where the number of traffic participants, weather
conditions and route lengths are specified beforehand. In
order to measure the driving proficiency of an agent, CARLA
uses the Driving Score (DS) metric. This metric can be
broken down into two components, the Route Completion
(RC) and the Infraction Penalty (IP):

• Route Completion (RC): Percentage of route com-
pleted by the agent in a every route i, averaged across
N routes.

RC =
1
N

N

∑
i

Ri (1)

• Infraction Penalty (IP): Geometric series of infraction
penalty coefficients, p j

i for every instance i of infraction
j incurred by the agent during the route. Each agent
starts with an ideal 1.0 base score for each route, which
is reduced by a penalty coefficient for every infraction.

Pi =
ped,...,stop

∏
j

(p j
i )

in f ractions( j) (2)

• Driving Score (DS): Weighted average of the infraction
penalty with route completion for each route. This is
the main metric used to evaluate the ADS both in local
experiments and for ranking models on the CADL.

DS =
1
N

N

∑
i

RiPi (3)

For these previous metrics, higher value is better.
All local test were carried out in a PC desktop (AMD

Ryzen 9 5900X, 32GB RAM with CUDA-based NVIDIA
GeForce RTX 3090 24GB VRAM), using the ROS Noetic
version (Ubuntu 20.04) as the communication middleware.
To conduct our experiments, we make use of the following
sensor suite: Monocular RGB camera (1920x1080, 80 FoV),
a 64-channels LiDAR, GNSS returning the geo location
data, a 6-axis IMU and a speedometer that provides an
approximation of the ego-vehicle linear velocity. Fig. 6
shows the vehicle dimensions and frames positions used in
our experiments (both local and in the leaderboard).

Note that the Docker image submitted to the AlphaDrive
cloud platform, which hosts the CADL, presents exactly the
same sensor suite and software architecture than in our local
experiments. As observed in the general workflow (Fig. 2),
we first develop our architecture using training routes. Then,
validation and testing routes with non-observed scenarios
are run. In terms of local testing, we conduct two local
experiments (A and B respectively). Firstly, we observe the
evolution our ADS and how the different improvements help
to commit the fewer number of traffic infractions each time.
Secondly, a local test proposed by [26] is run in order to

compare our architecture with other state-of-the-art ADS as
a preliminary local validation before submitting the Docker
image to the cloud.

Regarding the first experiment, we select 5 different routes
in 6 different CARLA towns (01 to 06). Along these routes
we may find traffic situations which are based on the above
mentioned NTHSA pre-crash typology, in addition to the
own challenging features of each map (roundabouts, uneven-
ness, tunnels, 5-lane junction, T-junctions, bridge, etc.). Table
I and II summarize the local experiment A. In Table I we may
observe the results of running a first version of our ADS with
a basic version of the map monitor, without stop signals in
the regulatory elements and the decision-making layer only
computing the Adaptive Cruise Control (ACC) behaviour.
On the other hand, Table II illustrates the results with our
current configuration, in which we refactorize the ego-vehicle
ROS node, which is the parent node in our ADS, to ensure
sensor synchronization avoiding and prevent data loss. A full
version of the map monitor is used in this case, computing
both the standard and intersection lanes around the ego-
vehicle as well as the most relevant regulatory elements,
in addition to other improvements of the perception and
decision-making layers according to the monitored elements
provided, such as the LiDAR based safety module for low-
level detection or the implementation of different behavioural
use cases using HBIPNs. We may observe in both tables
that DS, RC and IP are the average values for each of the
towns. As expected, infraction penalties have been reduced
incrementing the complexity of our ADS. By using an en-
hanced prior knowledge information, which derives in more
robust reliable perception and decision-making monitors, we
are able to minimize the agent blockouts, helping to improve
the RC metric. Regarding collisions infractions, pedestrian
collision is reduced to a half of the original value and
collisions with vehicles are reduced to a third of the original
value, contributing to improve IP parameter. In conclusion,
the improvements of the local experiment A.2 with respect
the local experiment A.1 are as following: +137.67% DS,
+23.72% RC and +63.88% IP. Fig. 7 illustrates some inter-
esting traffic scenarios of this first experiment.

TABLE I: Local experiment A.1.: Basic version of map monitor, DM layer
only conducts Adaptive Cruise Control (ACC) behaviour.

Town RL [m] DS ↑ [%] RC ↑ [%] IP ↑ [0,1]
Town01 680.04 55.12 75.12 0.80
Town02 899.57 53.12 78.62 0.65
Town03 1520.76 2.36 77.02 0.04
Town04 2066.07 4.18 92.25 0.05
Town05 1043.06 9.81 38.60 0.48
Town06 1655.34 11.25 90.7 0.13

Global Metrics 1310.81 22.64 75.39 0.36

Once we have observed increasing complexity of our ADS
is directly related to improvement of the driving proficiency,
represented by the DS metric, we conduct a second in-
ternal evaluation proposed by [26], comparing the driving
proficiency of our architecture against some state-of-the-art
end-to-end approaches. The evaluation consists of 42 routes



(a) Red Traffic Light and lane change use case (b) Unexpected pedestrian use case

Fig. 7: Qualitative results of our local experiment A. (a) The ego-vehicle is waiting in front of a red traffic light, monitoring the intersection lanes, before
carrying out a lane change. (b) An Unexpected VRU jumps into the road giving rise to an emergency break. As commented in Sec. III-D, the CyberTruck
(on the left lane) is not detected either by Yolov5-L or KD-Tree, representing an interesting challenge during navigation

from 6 different CARLA towns (01 to 06) where each route
presents a unique environment combining one of 7 weather
conditions (Cloudy, Wet, MidRain, WetCloudy, HardRain,
SoftRain, Clear) with one of 6 daylight conditions (Morning,
Noon, Sunset, Dawn, Twilight, Night).

TABLE II: Local experiment A.2. : Full version of map monitor, Safety
Module is implemented, Full version of DM layer, Blockouts are minimized

Town RL [m] DS ↑ [%] RC ↑ [%] IP ↑ [0,1]
Town01 680.04 86.0 100.00 0.86
Town02 899.57 45.17 88.09 0.54
Town03 1520.76 56.44 86.56 0.7
Town04 2066.07 52.60 98.27 0.53
Town05 1043.06 38.42 86.76 0.46
Town06 1655.34 44.24 100.00 0.44

Global Metrics 1310.81 53.81 93.28 0.59

Regarding the different approaches, CIRLS [27] learns
to directly predict the vehicle control from visual features
while being conditioned on a discrete navigational command.
Learning By Cheating (LBC) [28] models the navigation
task as a teacher model, with access to the Bird’s Eye
View (BEV) semantic segmentation groundtruth maps, and
finally an image-based student model trained using supervi-
sion from the teacher. AIM [29] represents a Multi-Modal
fusion transformer as an improved version of CIRLS, where
a GRU (Gated Recurrent Unit) decoder regresses control
waypoints. NEAT [26] presents a continous function which
maps locations in BEV scene coordinates to waypoints and
semantics, using intermediate attention maps to iteratively
compress highdimensional 2D image features into a compact
representation. Table III illustrates our comparison. The
evaluation (42 routes) is performed three times for each
model in order to report the mean and standard deviation
for the main metrics. Our architecture obtains the best RC
and the third best DS of the different configurations, with
an Infraction Penalty on par with these solid end-to-end
baselines. Qualitative results of this internal evaluation can
be found here.

After validating the architecture with local experiments,
we upload our Docker image to the CADL where teams can

evaluate their approaches on secret test routes on provided
third party servers. In particular, this secret test set consist
of 10 routes evaluated on 2 unknown weather conditions
with 5 repetitions (100 routes) in two secret CARLA towns,
leading to a total of 173 km of driving experiences. In our
case, we participate in the MAP modality, where the input
high-level route is a list of tuples with the first element of the
tuple expressing the waypoints in world coordinates, and the
second element of the tuple contains a high-level command
(lane follow, change lane left, etc.).

TABLE III: Local experiment B: We compare our ADS against different
End-to-End architectures, showing the µ and σ over 3 evaluations for each
model. We bold the best results in black and the second best in blue for
each metric

Method Aux. Sup. DS ↑ [%] RC ↑ [%] IP ↑ [0,1]
CIRLS [27] Velocity 22.97±0.90 35.46±0.41 0.66±0.02
LBC [28] BEV Sem 29.07±0.67 61.35±2.26 0.57±0.02

AIM [29] None 51.25±0.17 70.04±2.31 0.73±0.03
2D Sem 57.95±2.76 80.21±3.55 0.74±0.02

AIM-MT BEV Sem 60.62±2.33 77.93±3.06 0.78±0.01
Dth+2D Sem 64.86±2.52 80.81±2.47 0.80±0.01

AIM-VA 2D Sem 60.94±0.79 75.40±1.53 0.79±0.02
NEAT [26] BEV Sem 65.10±1.75 79.17±3.25 0.82±0.01

Ours Modular 62.91±1.96 92.11±1.84 0.69±0.01

Table IV summarizes the CADL results in the Map track.
As observed, we get both the best RC with our current
architecture and second best DS, being the best modular
pipeline in the CADL. GRI-based DRL [30] combines ben-
efits from exploration and expert data and is straightforward
to implement over any off-policy RL algorithm. Pylot [10],
CaRINA [2] and SmartElderlyCar [4] are modular platforms
with several state-of-the-art reference implementations for
the various components of the ADS, similar to our archi-
tecture. Nevertheless, despite the fact we beat our previous
submission considering the DS (12.63 −→ 18.75%) and RC
(61.59 −→ 75.11%) metrics and our ADS ranks in second
position, the IP metric (0.28) is not on a par with the
results obtained in the local experiments (0.59 from Table
II and 62.91±1.96 from Table III), which indicates that at
the moment of writing this work, our method is not able to
safely drive on the novel conditions of the leaderboard.

https://cutt.ly/SPyu0lU


TABLE IV: CARLA Autonomous Driving Leaderboard results (MAP track).
We bold the best results in black and the second best in blue for each metric

Team Submission DS ↑ RC ↑ IP ↑
[%] [%] [0,1]

Anonymous GRI-based DRL [30] 33.78 57.44 0.57
RobeSafe Techs4AgeCar (Ours) 18.75 75.11 0.28
ERDOS Pylot [10] 16.70 48.63 0.50
LRM-B CaRINA [2] 15.55 40.63 0.47

RobeSafe SmartElderlyCar [4] 12.63 61.59 0.33

V. CONCLUSIONS AND FUTURE WORKS

This work presents the implementation and validation of a
powerful ROS-based modular software ADS using CARLA
and Docker as a baseline to democratize and accelerate
the development and research of holistic validation of AVs.
The modular architecture is made up by several state-of-
the-art reference implementations for the different layers
of the vehicle. The validation has consisted on two local
experiments, where we have compared our ADS both against
a previous version of the ADS as well as against solid end-
to-end baselines in a novel evaluation setting which involves
non-trivial traffic scenarios (based on the NHTSA pre-crash
typology) and adverse environmental conditions. The final
objective has been the validation of our ADS in the secret
test routes of the CADL, where even beating other solid
modular baselines in the MAP track in terms of driving
proficiency, the results in the cloud are not on pair with the
results obtained throughout internal evaluation. We plan to
reduce this gap, as a preliminary stage before implementing
the ADS in our real-world electric prototype.
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