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Abstract This paper represents research in progress in Simultaneous Localization 
and Mapping (SLAM) for Micro Aerial Vehicles (MAVs) in the context of rescue 
and/or recognition navigation tasks in indoor environments. In this kind of appli-
cations, the MAV must rely on its own onboard sensors to autonomously navigate 
in unknown, hostile and GPS denied environments, such as ruined or semi-
demolished buildings. This article aims to investigate a new SLAM technique that 
fuses laser and visual information, besides measurements from the inertial unit, to 
robustly obtain the 6DOF pose estimation of a MAV within a local map of the 
environment. Laser is used to obtain a local 2D map and a footprint estimation of 
the MAV position, while a monocular visual SLAM algorithm enlarges the pose 
estimation through an Extended Kalman Filter (EKF). The system consists of a 
commercial drone and a remote control unit to computationally afford the SLAM 
algorithms using a distributed node system based on ROS (Robot Operating Sys-
tem). Some experimental results show how sensor fusion improves the position 
estimation and the obtained map under different test conditions. 

Keywords Micro Aerial Vehicles · Indoor navigation · Sensor fusion · Simultane-
ous Localization and Mapping · Robot Operating System 

1 Introduction 

The growing research on MAVs and the consequent improvement of technologies 
like microcomputers and onboard sensor devices, have increased the performance 
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requirements of such kind of systems. Enabled by GPS and MEMS inertial sen-
sors, MAVs that can fly in outdoor environments without human intervention have 
been developed [1,2,3]. Unfortunately, most indoor environments remain without 
access to external positioning systems, and autonomous MAVs are very limited in 
their ability to operate in these areas.  

Traditionally, unmanned ground vehicles operating in GPS-denied environ-
ments can rely on dead reckoning and onboard environmental sensors for localiza-
tion and mapping using SLAM techniques. However, attempts to achieve the same 
results with MAVs have not been as successful due to several reasons: the inaccu-
racy and high drift of Inertial Navigation Systems (INS) compared to encoder-
based dead reckoning, the limited payload for sensing and computation, and the 
fast and unstable dynamics of air vehicles, are the main challenges which must be 
tackled. 

Especially, pose estimation is essential for many navigation tasks, including lo-
calization, mapping and control. The technique used depends mainly on the avail-
able on board sensors, which in aerial navigation must be carefully chosen due to 
payload limitations. Through their low weight and consumption, most commercial 
MAVs incorporate at least one monocular camera, so VSLAM (Visual SLAM) 
techniques have been widely used. However, most of these works have been lim-
ited to small workspaces which have definite image features and sufficient sun 
light. Furthermore, computational time is too high for the fast dynamics of aerial 
vehicles, making difficult to control them. On the other hand, despite their greater 
weight and consumption, range sensors such as RGB-D cameras or laser range 
sensors have also been used on MAVs due to their fast distance detection. 

This paper focuses on fusion of laser, monocular vision and IMU (Inertial 
Measurement Unit) to robustly track the position of a MAV using SLAM. To face 
the computational requirements, the system is composed of a flight and a ground 
unit, so that code can be distributed in different nodes using ROS (Robot Operat-
ing System). In order to calculate pose which is relatively insensitive to errors, 2D 
map is generated based on laser. The estimated footprint position of the MAV is 
then filtered with IMU and VSLAM information using an EKF (Extended Kalman 
Filter) to obtain a full 6DOF pose estimation, that is demonstrated to be robust 
under different illumination and environmental test conditions. 

The remaining part of this paper is organized as follows. Section 2 discusses re-
lated work. Section 3 describes the overall system. The SLAM approach is ex-
plained in section 4. The experimental results are presented in Section 5. Finally, it 
is followed by the conclusion and future work in Section 6. 

2 Related Work 

The most challenging part of SLAM for MAVs is to obtain the 6DOF pose of the 
vehicle without odometry information. To do this, different sensor sources have 
been suggested, such as laser range sensors [4], monocular cameras [5], stereo 
cameras [6] or RGB-D sensors [7,8].  
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Due to weight limitations, most of the works only use the onboard camera and 
IMU to apply VSLAM (Visual SLAM) techniques [9,10,11,12,13,14]. These sys-
tems demonstrate autonomous flight in limited indoor environments, but their 
approaches have been constrained to environments with specific features and 
lighting conditions, and thus may not work as well for general navigation in GPS-
denied environments. On the other hand, the high working rate of actual laser 
scanners, along with their direct and accurate range detection, make them a very 
advantageous sensor for indoor navigation. Several works, such as [4,15,16], fuse 
laser and IMU measurements to obtain 2D maps and to estimate the 6DOF pose of 
the MAV. 

However, there are very few works in which both laser and vision are used to 
solve the SLAM problem in MAVs. The main challenge is the computational 
charge, that can’t be afford by the onboard processors. For example, in [17] laser 
and IMU are fused to estimate the 6DOF position of the robot, whilst vision is 
only used to loop closure in the obtained map. In [18] laser and vision are used, 
but to solve separately the outdoors and indoors odometry problem. 

In this work, laser, vision and IMU measurements are fused to solve the SLAM 
problem in complex indoor environments and robustly estimate the 6DOF pose of 
the MAV, using a distributed system with a flight unit and a ground station. 

3 System Overview 

We address the problem of autonomous indoor MAV localization as a software 
challenge, focusing on high level algorithms integration rather than specific hard-
ware. For this reason, we use a commercial platform with minor modifications, 
and an open-source development platform (ROS), so that drivers of sensors and 
some algorithms can be used without development. 

3.1 Hardware Architecture 

Our quadrotor MAV, shown in figure 1, is based on the ARDrone from Parrot 
[19]. This MAV can carry up to 120g of payload for about 5min. It’s equipped 
with two cameras (one directed forward and one directed downward), an ultrason-
ic altimeter, a 3-axis accelerometer and 2 gyroscopes. It incorporates an onboard 
controller based on ARM 468 MHz processor with 128 Mb DDR Ram, with a 
Linux distribution. It also provides a USB port and is controlled via Wireless 
LAN. 

To the commercial platform, we have added a Hokuyo URG-04LX laser for di-
rect range measuring, an additional upward facing sonar and a Raspberry-PI board 
for reading and transmitting these sensor measurements. The Raspberry and the 
remote computer are both connected to the ARDrone network to control the robot. 
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Fig. 1 The experimental platform with onboard computation and sensing. 

Although the ARDrone comes with some software for basic functionality [20], it’s 
not open-source nor easy to modify, and so we treat the drone as a black box, us-
ing only the available W-LAN communication channels to access and control it. 
Specifically, these are the inputs/outputs we use in our SLAM system: 

 Video channel, to receive the video stream of the forwards facing camera, with 
maximal supported resolution of 320x240 and frame rate of 18fps. 

 Navigation channel, to read onboard sensor measurements every 5ms. The data 
used by our system are: 

─ Drone orientation as roll, pitch and yaw angles   ,, . 

─ Horizontal velocity in drone’s coordinate system 






 ________
, vdyvdx , calculated 

onboard by an optical-flow based motion estimation algorithm [20]. 
─ Drone height h , obtained from the ultrasound altimeter measurements. 

 Command channel, to send the drone control packages, with the desired roll 
and pitch angles, yaw rotational velocity and vertical speed: 

  zv̂,ˆ,ˆ,ˆ u  (1) 

Besides this, a ROS node in the Raspberry-PI reads the Hokuyo laser scan and 
broadcast it through the drone’s network. 

3.2 Software Architecture 

As it’s shown in figure 2, the onboard controller and processor perform sensor 
readings and basic control of the MAV. The ground station executes our SLAM 
system and also the planning and control strategies, the last ones being out of the 
scope of this paper. 
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Fig. 2 The experimental platform with onboard computation and sensing. 

The SLAM module consist of three major components: (1) a scan matching al-
gorithm that uses laser readings to obtain a 2,5D map of the environment and a 
3DOF pose estimation of the footprint of the MAV on the map; (2) a monocular 
visual SLAM system that obtains a 6DOF pose estimation and (3) an Extended 
Kalman Filter that fuses the last estimations with the navigation data provided by 
the onboard sensors of the MAV to obtain a robust 6DOF estimation of the posi-
tion of the robot in the 2,5D map. This estimation is used, at the same time, as a 
priori assumption for the next scan matching step, closing the SLAM algorithm. 

4 SLAM Approach 

In the following subsections, we describe the modules of the SLAM system shown 
in figure 2. 

4.1 Scan Matcher 

This module aligns consecutive scans from the laser rangefinder to estimate the 
vehicle’s motion. Although lots of scan matching techniques have been developed 
and applied to SLAM for ground robots moving on flat surfaces [21], most of 
them require odometric information that is not available in MAVs. However, the 
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HectorSLAM project [22], developed by the Team Hector of the Technische Un-
iversität Darmstadt, presents a system for fast online generation of 2D maps that 
uses only laser readings and a 3D attitude estimation system based on inertial 
sensing. This method requires low computational resources and it’s widely used in 
different research groups because it is available as open source and based on ROS. 

In this work, we adapt the HectorSLAM system to our scan matching module, in 
order to obtain a 2,5D map and a 2D estimation of the footprint pose of the MAV 
within the map, consisting in the (x,y) coordinates and yaw angle, that we call: 

 ),,( LLLLASER yxz   (2) 

The 2D pose estimation is based on optimization of the alignment of beam end-
points with the map obtained so far. The endpoints are projected into the actual 
map and the occupancy probabilities are estimated. The scan matching is solved 
using a Gaussian-Newton equation, which finds the rigid transformation that best 
fits the laser beams with the map. A multi-resolution map representation is used to 
avoid getting stuck in local minima. In addition, a 3D attitude estimation system 
based on the IMU measurements transforms the laser readings into a base-
stabilized frame (horizontal to the ground) in order to compensate the roll and 
pitch movements when obtaining the 2.5D map. 

Fig. 3 shows the map and footprint pose estimation obtained by the scan 
matcher in one of our experiments. Although HectorSLAM provides good results 
in confined environments, the lack of odometry information to detect horizontal 
movements (only attitude is obtained from the IMU and used to stabilize laser 
measurements) results in undesirable effects, such as shortening of corridors and 
not loops detection. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Partial results of the scan matcher while moving around a room and along a corridor. 
The real length of the corridor is 17.6m, while it is shortened to 13.8m by the algorithm.  

4.2 Monocular SLAM 

For monocular SLAM, our solution is based on LSD-SLAM (Large-Scale Direct 
Monocular SLAM) [23], available as a ROS package. This is a direct (feature-
less) monocular SLAM algorithm which, along with highly accurate pose estima-
tion based on direct image alignment, reconstructs the 3D environment in  

a) b) 
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real-time as pose-graph of keyframes with associated semi-dense depth maps. By 
the moment, and due to the high computational charge of 3D mapping, we are 
only using the 6DOF pose estimation of this algorithm as an input to the data  
fusion filter, and we use the 2,5D laser map for navigation. 

Fig. 4 shows the 3D map and pose estimation obtained by the V-SLAM system in 
the same room of the experiment shown in fig.3. While results are good in this case, 
the system needs a high amount of visual characteristics that are not available in 
corridor areas or in dark zones, where it needs to be fused with other sensors. 
 

 
Fig. 4 Partial results of the VSLAM system while moving around the room of fig. 3.a). 

4.3 Data Fusion with EKF  

In order to fuse all available data, we employ an Extended Kalman Filter (EKF). 
This EKF is also used to compensate for the different time delays in the system, as 
detailed described in [24], arising from wireless LAN communication and compu-
tationally complex visual tracking. 
 
The EKF uses the following state vector: 

 10),,,,,,,,,(:  T
ttttttttttt vzvyvxzyxχ  (3) 

Where ),,( ttt zyx is the position of the MAV in m, ),,( ttt vzvyvx the velocity in 
m/s, ),,( ttt  the roll, pitch and yaw angles in deg, and t the yaw-
rotational speed in deg/s, all of them in world coordinates. In the following, we 
define the prediction and observation models. 
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a) Prediction Model 
 

The prediction model is based on the full motion model of the quadcopter’s flight 
dynamics and reaction to control commands derived in [24]. A new calibration of 
the model parameters has been done because the Hokuyo laser sensor weight con-
siderably modifies the dynamics of the system. 
 
The model stablishes that the horizontal acceleration of the MAV is proportional 
to the horizontal force acting upon the quadcopter, that is, the accelerating force 
minus the drag force. The drag is proportional to the horizontal velocity of the 
quadcopter, while the accelerating force is proportional to a projection of the  
z-axis onto the horizontal plane, which leads to: 
 

   ttttttt vxKKvx  sinsincossincos21

.
 (4) 

   ttttttt vyKKvy  sincoscossinsin21

.
 (5) 

 
Furthermore, the influence of the sent control command  zv̂,ˆ,ˆ,ˆ u  is de-
scribed by the following linear model: 
 

  ttt KK  ˆ
43

.
 (6) 

  ttt KK  ˆ
43

.
 (7) 

  ttt KK  ˆ
65

.
 (8) 

  ttt vzzvKKvz  ˆ87

.
 (9) 

 
We estimated the proportional coefficients K1 to K8 from data collected in a series 
of test flights. From eqs (4) to (9) we obtain the overall state transition function: 
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b) Inertial Navigation Observation Model 
 

This model relates the onboard measurements obtained through the navigation 
channel of the quadcopter described in section 3.1 (that we called “navdata” in 
figure 2) and the state vector. The quadcopter measures its horizontal speed 

),(
________
vdyvdx in its local coordinate system, which we transform into the world frame 

),( tt vyvx . The roll and pitch angles measured by the accelerometer are direct 
observations of the corresponding state variables. On the other hand, we differen-
tiate the height measurement and the yaw measurement as observations of the 
respective velocities. The resulting measurement vector NAVDATAz  and observation 
function )( tNAVDATAh x  are: 

 
T

tttttNAVDATA hhvdyvdx 






   )(,,),(,, 11

________

,z  (11) 

 




































t

t

t

t

tttt

tttt

tNAVDATA
vz

vyvx
vyvx

h

cossin
sincos

:)(χ  (12) 

c) VSLAM Observation Model 
 

When LSD-SLAM successfully tracks a video frame, its 6DOF pose estimation is 
transformed from the coordinate system of the front camera to the coordinate sys-
tem of the quadcopter, leading to a direct observation of the quadcopter’s pose 
given by: 

  tCDCtVSLAM f ,, EEz   (13) 

  TtttttttVSLAM zyxh  ,,,,,:)(χ  (14) 

where )3(, SEtC E is the estimated camera pose, )3(SEDC E the constant 
transformation from the camera to the quadcopter coordinate system and 

6)3(: SEf the transformation from an element of SE(3) to the roll-pitch-yaw 
representation. 
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d) Scan Matcher Observation Model 
 

The scan matcher maintains a 3DOF estimation of the footprint pose of the MAV, 
that is considered as a direct observation of the corresponding state variables, as 
it’s shown in the following linear observation model: 

 T
tLtLtLtLASER yxz ),,( ,,,,   (15) 

 

















0100000000
0000000010
0000000001

LASERH  (16) 

4.4 SLAM Integration  

For best performance, information between the scan matcher and the EKF esti-
mate is exchanged in both directions. Thus, the 6DOF pose estimate of the EKF is 
projected on the xy-plane and is used as start estimate for the optimization process 
of the scan matcher, as it’s shown in figure 2. 

5 Results 

In order to compare the performance of the SLAM system with the different sen-
sors separately and fused in the proposed EKF, we teleoperated the MAV along 
one of the rooms and corridors of our work environment while registering data 
from laser, camera and ARDrone sensors. Figure 5 shows the footprint projections 
of the estimated 6D trajectories in three different executions of the SLAM system. 
In red it is shown the estimated trajectory when only the prediction model and the 
ARDrone navdata measurements are used; in this case, due to the inaccuracy of 
commands and the high drift of IMU measurements, the estimation is very poor. 
In green colour we show the estimation when using the prediction model and the 
laser scan matcher observation. Although the results are better than using only the 
scan matcher (see fig. 3), corridor is still shortened from 17.6m to 15.2m. In blue 
we show the results of the entire SLAM system, using commands for prediction 
and laser, visual and navdata observations for correction. The map shown in fig 5 
corresponds to this execution of the EKF. In this case, we obtain the best map and 
trajectory estimation, in which loop closure is better in the room, and the esti-
mated corridor length is 17.4m, very close to the real one. 
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Fig. 5 Experimental results in three different executions of the SLAM system: (red) using 
prediction an navdata observation models; (green) using prediction and scan matcher observa-
tion model; (blue) using prediction and visual, scan matcher and navdata observation models. 

6 Conclusions and Future Work 

This paper shows work in progress and initial results of a indoor SLAM system 
for MAVs that fuses visual, laser and on board sensors to obtain a better estima-
tion of the 6D pose of the MAV and a 2D map of the local environment. Fusing 
laser and vision is possible by using light algorithms running on a remote control 
station. In future work, we will add a large scale 3D mapping system with loop 
closure detection by using advanced VSLAM algorithms. 
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