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Abstract

This paper proposes a new method to perform real-time face pose estimation for±90◦ yaw rotations and under low light conditions.
The algorithm works on the basis of a completely automatic and run-time incremental 3D face modelling. The model is initially
made up upon a set of 3D points derived from stereo grey-scaleimages. As new areas of the subject face appear to the cameras,
new 3D points are automatically added to complete the model.In this way, we can estimate the pose for a wide range of rotation
angles, where typically 3D frontal points are occluded.

We propose a new feature re-registering technique which combines views of both cameras of the stereo rig in a smart way in order
to perform a fast and robust tracking for the full range of yawrotations. The Levenberg-Marquardt algorithm is used to recover the
pose and a RANSAC framework rejects incorrectly tracked points.

The model is continuously optimised in a Bundle Adjustment process that reduces the accumulated error on the 3D reconstruc-
tion.

The intended application of this work is estimating the focus of attention of drivers in a simulator, which imposes challenging
requirements. We validate our method on sequences recordedin a naturalistic truck simulator, on driving exercises designed by a
team of psychologists.

Keywords: 3D Face pose estimation, face model, yaw rotation, feature re-registering, stereo vision

1. Introduction

Face pose estimation has been a very active field of research
for more than two decades. During this period, the techniques
have evolved together with the increasing computational re-
sources of modern computers. Along with this evolution, the
objectives of face pose estimation systems have also become
more enterprising. Earlier works only aimed to detect a few
predefined poses, just enough to allow a coarse pose estimation.
Those systems would enable a machine to discriminate the in-
terlocutors of a conversation inside a room with a controlled
light environment [1].

Nowadays, as the basic objective of getting fine pose estima-
tion is being met, new requirements can be imposed, depending
on specific applications. Some modern pose estimators have
errors below 3◦ [2, 3, 4], but new applications may require the
systems to work in real-time, wider rotations ranges, low and
variable lighting conditions, user independence or other simi-
lar challenging requisites. These new challenges must be ad-
dressed by future intelligent face pose estimation systems. Of-
ten, the pose estimation algorithm is just a necessary previous
step for a gaze estimation system. Gaze is actually what gives
the real information of the point of attention of a subject. Accu-

rate gaze estimation thus requires very precise and robust face
pose estimation.

Driving inattention is a major factor to traffic crashes, which
cost many lives and money every year, everywhere in the world.
The latest available data (2009) report 34,500 deaths in the
EU27 in traffic accidents, as well as 1.5 million injured, with
associated costs representing 2% of the EU GDP. Data gathered
for several decades have shown that inattention, which includes
drowsiness and distractions, is behind 80% of crashes [5, 6].
Driving distraction is more diverse and implies a riskier factor
than drowsiness and it is present in over half of inattentionin-
volved crashes [7]. Increasing use of In-Vehicle Information
Systems (IVIS) such as cell phones, GPS navigation systems,
DVDs and satellite radios and other on-board devices has ex-
acerbated the problem by introducing additional sources ofdis-
traction [8]. Enabling drivers to benefit from IVIS without di-
minishing safety is an important challenge.

Most of the occurrence of distraction can be reflected through
the driver’s face appearance and face/gaze activity. Focalisa-
tion obtained from face pose or gaze estimation can be effec-
tive to infer parameters related to distractions. Driver’sinatten-
tion monitoring systems, developed for the automotive indus-
try, provide very challenging scenarios for face pose estimation
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methods. Moreover, inattention monitoring imposes requisites
such as real-time, accuracy and good integration. In addition, a
consumer on-board application would require complete userin-
dependence, no matter age, gender or race, no calibration step,
and fast initialisation [9]. Before these systems can be commer-
cialized, they must be exhaustively tested in simulators. Provid-
ing a system for distraction analysis and driver’s behavioural
study inside a simulator adds new challenges. To date, nat-
uralistic scenarios providing incidence data on distracting ac-
tivities have been small-scale studied. An effort is needed to
study distraction problem using naturalistic situations.On the
other hand, simulators usually present low light conditions to
increase the user immersion feeling. Systems must work under
low lighting conditions and must be robust to wide head turns,
partial occlusions, different users (with and without glasses)
and slight illumination changes.

This paper presents face pose estimation and tracking tech-
niques able to work properly for a driver distraction monitor-
ing application inside a naturalistic simulator. In the state of
the art there are few publications about computer vision sys-
tems under demanding real driving conditions [10]. There are
only some few commercial companies offering their products
for face pose estimation [11, 12]. These products are able to
work in both indoors and outdoors environments, and require
some degree of training for each user. However, no technical
information about their relying algorithms has been published
and they lack of methodological test validation. We focus our
approach to a truck simulator, where ambient illumination is
low. This limits the feature matching and tracking techniques
to be applied. We tested our proposed method in a motorized
simulator, under realistic driving conditions and with profes-
sional drivers.

The rest of the paper is structured as follows. Section2
presents several state-of-the-art face pose estimation works re-
lated to our approach. Section3 describes the general architec-
ture of our approach. Then, Sections4 and5 describe respec-
tively the automatic 3D face model creation and face pose es-
timation with model correction. Section6 shows performance
evaluation and experimental results of our face estimationpro-
posal. Finally, we present some conclusions and future work.

2. Related Work

The huge number of works found in the literature shows that
there is an intensive effort by researchers working on this topic,
who have developed a wide range of approaches. Despite this
effort, it is hard to find works focused in the study of drivers
distractions, which is the intended application of this proposal.

Murphy-Chutorian and Trivedi [13] classified head pose es-
timation systems in eight different categories. Within them, the
more recent publications and more promising results are pro-
vided by tracking methods, flexible models, and hybrid sys-
tems.

There are many methods that produce a coarse output. These
have the advantages that do they not rely on face tracking, min-
imising the possibility of tracking losses. However, theirlower

accuracy makes those approaches unfeasible for gaze estima-
tion. Generally, gaze is achieved by composing face pose esti-
mation with eye direction [14]. Consequently, if the pose esti-
mation is not precise enough, the gaze estimation will be inac-
curate as well.

Focusing on fine output methods, one of the most used ap-
proaches in the last years are dimensionality reduction tech-
niques, such as PCA. It became very popular, specially in hy-
brid architectures, used in conjunction with other approaches
such as flexible models [15, 16] or more recently with tracking
methods [17, 18]. These dimensionality reduction methods re-
quire training and often manual labelling. Moreover, PCA is
a linear approach, and consequently is not well suited for the
nonlinear problem of wide 3D rotation appearance variations.
Some authors applied Kernel-PCA (KPCA) variations [19] to
address this problem. Manifold embedding techniques have
also been proposed, but their main disadvantage in the inability
to separate identity and pose estimation, as the number of users
in the training dataset grows. This means that the pose estima-
tion accuracy can vary for different users [20], if the training
database is big enough. On the other hand, these methods are a
good option for low resolution images, where the little texture
information available is well exploited by the dimensionality
reduction provided by the embedding.

The non-rigid models also present some problems. The pro-
cess of calculating new modes for a deformable model is slow.
If many modes are allowed, there is a chance that tracking er-
rors of rotations are interpreted as deformation. But as thenum-
ber of allowed modes decreases, the system gradually loses its
non-rigid capability. Paladini et al. [21], for instance, saturate
the number of modes to 10 in one video experiment showing an
actress talking and moving her head. Most of the deformation
is captured by few modes during the first minutes of operation.
This avoids increasing execution times, but actually limits the
learning process in time.

Much faster algorithms may use flexible models, such Active
Appearance Models (AAM) or Active Shape Models (ASM).
Flexible models require extensive manual labelling of face
landmarks. Using an extensive database, those methods are user
independent. In [22], the authors showed that it is possible to
achieve very low computational cost using a patch clustering
approach. However, the main disadvantage is that they are not
suitable for wide head rotations. Related works, such as the
ones described in [23, 24], do not show rotations wider than
45◦. In addition, models often tend to learn small rotations as
deformations, not providing an accurate pose estimation.

Tracking methods, whether only tracking or as part of hy-
brid systems, provide better accuracy than previous approaches.
This technique is user independent, and its implementation
can easily meet real-time requirements. Examples are [25, 2]
among others, which have errors below 3◦. A recent publica-
tion [26] presented an online learning model proposal, achiev-
ing 3.8◦ and 4.2◦ error for pitch and yaw rotations. However,
their results were only evaluated in a range of±40◦ and±20◦

respectively. In the same way, [25], while showing very good
results, with an error as low as 2◦ for yaw rotations, only evalu-
ates the systems for short sequences and small rotations. They
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create a static model at the initialisation step, so no widerrota-
tions are possible. It is not clear how well the system can deal
with the drifting problem for longer video sequences. SIFT [27]
or SIFT-like features have also been used [2]. However, the low
lighting conditions in a simulator are not appropriate for SIFT-
like matching techniques, as we will show in our results section.

Using a 3D face model notably improves robustness, since it
makes possible to detect tracking errors due to appearance sim-
ilarity of different parts of the face under some rotation. Some
authors have used generic face models, such as cylindrical [28]
or ellipsoidal [29] ones, and use face appearance mapping to the
model shape. However, the wider rotation ranges are provided
by sparse models formed from 3D points.

Despite the variety of related works, the face tracking prob-
lem is still open, and none of the detailed solutions deal with the
problem of having at the same time a full-range, accurate, user
independent, real-time and calibration free pose estimation sys-
tem. Many of the model-based systems rely on generic models,
which do not fully adapt to individual geometry. On the other
hand, other methods, based on appearance and requiring train-
ing, do not generalise well enough to be classified as user inde-
pendent. A dynamic 3D model can be fitted to any user and give
an accurate estimation while being user independent. However,
it needs being updated under different user poses, both in ge-
ometry and appearance, in order to maintain performance on
the full rotation range and illumination changes.

In [30], Jimenez et al. presented a stereo camera system that
automatically builds a 3D rigid model of the face. At the be-
ginning of a video sequence, salient features of the face arede-
tected and used to build the model. A modified SMAT [31] was
used to model and track the texture around the feature points,
independently on each camera. The system computed the 3D
pose with POSIT [32], and used RANSAC [33] to remove out-
liers. The system showed good results for rotations under 45◦.

In this paper, we present a series of extensions to that work
in order to solve some of its weaknesses. We introduce a 3D
model extension method, which dynamically adds new points
to the model when the face rotates. We include Bundle Ad-
justment (BA) [34] to refine the model during creating and ex-
tension, and prevent drifting. Feature point tracking has been
greatly improved using a new re-registering technique. Now
the model considers both the texture of the features and the rel-
ative face angle to the cameras. This data is used to advance the
texture of the patches as the face rotates. Finally, POSIT has
been replaced with the Levenberg-Marquardt (LM) algorithm
[35], and the proposal has been widely validated.

3. General Architecture

The proposed face pose estimation approach is based on
tracking methods, since they obtain the best accuracy. The sys-
tem is based on tracking a set of features which are automati-
cally detected on the subject’s face, by using a calibrated stereo
rig. The algorithm is designed to automatically extract theinter-
est points and to build the 3D model of the face, just requiring
the driver to look straight ahead at the initialisation frame. The
algorithm is designed to automatically extract the interest points

and to build the 3D model of the face, just requiring the driver
to look straight ahead keeping his head in vertical positionat
the initialisation frame.

In order to cope with feature appearance variations due to
rotation, a feature template selective re-registering technique
is carried out using a novel mixed-views technique using both
cameras. In this way, one camera is used to anticipate what the
other will see, whereas the other camera is used for tracking,
yielding a more robust tracking against changes in appearance
and different viewpoints. During yaw rotations, the selective re-
registering chooses the frames in which pose uncertainty ismin-
imal to avoid the template drifting problem. For roll and pitch
rotations, a feature warping is performed to diminish the projec-
tion variation. Incorrectly tracked points (outliers) aredetected
based on their Euclidean distance to the model point projections
after pose estimation, and discarded using a RANSAC [33] pro-
cess. In addition, a pose uncertainty can also be estimated based
on the sum of this Euclidean distance for the inliers. 3D poseis
recovered from the set of 2D points assuming weak camera pro-
jection. Finally a BA optimisation is used to refine and correct
the model.

Initially the model only contains features from a frontal face,
which will self-occlude under wide rotations. To increase the
range of rotation, it is extended with the addition of new fea-
tures, when the number of nonoccluded ones falls bellow a
minimum. Model extension is automatically performed when
the algorithm requires it, and the conditions are appropriate for
this. However, the 3D coordinates of a new added feature in-
herit the specific error related to the poses in which the feature
is being added. To correct this, a BA background process con-
stantly corrects the model 3D points at some key-frames. This
allows for accurate point addition to the model so the algorithm
works reliably for the whole yaw rotation range,±90◦ degrees.

The main blocks of the system architecture are shown on Fig-
ure1 and can be summarised as follows:

(a) Initially, a sparse 3D model is automatically built withfea-
tures extracted from subject’s face using a stereo rig.

(b) From frame to frame, the model pose is estimated from the
features located. When conditions are met, a novel camera
mixed-view re-registering technique is applied in order to
improve next model pose estimations.

(c) At some key-frames, re-registering is performed. The 3D
model might be extended to previously occluded parts of
the face and corrected with BA.

The face rotation at initialisation represents the pose rotation
reference, and it is arbitrarily assigned a rotation of 0◦, with
unitary vector~u = (0,0,1). Following rotation estimations are
relative to this reference.

4. Automatic 3D Face Model Creation

Although the 3D model formation takes place during the
whole execution of the algorithm, there is an initial model
which is automatically created during the first frames of theal-
gorithm. After initialisation, the model will continuously be im-
proved with corrections and extended with new 3D points. The
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Automatic 3D face model of features

Mixed-view tracking and Model pose estimation

Template re-registering and Model extension and correction

Frame-to-frame:

At initialization:

At some key-frames:

(a)  

(c)  

(b)  

Figure 1: Main blocks of the face pose estimation algorithm.

purpose of this model is to track the user’s face in a robust way
and to provide a reference from which the pose can be extracted
using 2D feature projections on the camera images. Figure2(a)
depicts the different steps involved in the model creation.

The model comprises the 3D coordinates of features and a
cluster of its appearance descriptors associated with eachone,
which are used for 2D tracking and later pose estimation.

4.1. Initial Features Detection and Stereo Matching
To create the model, features must be detected within the

bounds of the face. We detect a frontal face using the Viola &
Jones algorithm (V&J) [36] in the right and left initial frames.

At this step, the user is asked to look forward keeping his
head in vertical position, so the V&J can detect an almost
frontal face in both images. This will be the only initialisation
process the user will be asked to perform. V&J loops frame to
frame until the face is detected in both images. These frames
are set as the initialisation images,Ir

0 andIl
0.

Typically, V&J detects a bounding box that can leave outside
part of the face, e.g., ears, specially when the face exhibits a
small yaw angle with respect to any of the cameras. Due to the
base line of the stereo cameras, this is sure to happen at least for
one of the cameras, if not for both. To avoid this, the detected
V&J bounding box is widened 50 pixels to the left on the right
camera image, and to the right for the left camera image. This
value has been obtained experimentally. Figure2(b)depicts the
original V&J and widened detection box, and Figure2(c) the
extracted interest points.

The next step is the feature extraction process. A featureFi is
represented by its appearance template descriptor,T{r,l}i , its 2D
position on both camera images,x{r,l}i , and its 3D coordinates,
Xi . Eachx{r,l}i is obtained from a set ofinterest pointsin the im-
age, extracted using the Harris corner detector [37] within the
detected face box. After 3D reconstruction, the 2D feature posi-
tion in the images could actually be computed as the projections
of Xi over each camera image as follows:

x{r,l}i = H{r,l}Xi , (1)

whereHr is the projection matrix to the right camera image, and
Hl to the left one. The template descriptor,T{r,l}i , is extracted
from the patch on each camera image located aroundx{r,l}i .

Stereo image acquisition

Viola & Jones face detectors

Detection?
no

 Yes

Features 3D reconstruction

Geometrical constraints filtering

3D Face model

Interest points detection

Descriptors stereo matching

(a) Block diagram of the model creation

(b) V&J detection box (inner) and
widened feature search area (outer)

(c) Harris interest points

Figure 2: Model creation process.

To obtain a featureFi , it is first necessary to obtain its 2D
projections on each camera, establish the correspondence of xr

i
to xl

i and then computeXi by stereo recovery. These interest
points represent parts of the image which are likely to be easily
matched to their counterpart interest point on the other camera
image, and on subsequent frames over time. Consequently, in-
terest points must be easily differentiable from other parts of the
image. If for any reason, an interest point can not be matched
with any other from the other image, it is discarded.

4.2. Multisize Matching Proposal

Different authors have published comparatives on detectors
and image registration methods [38, 39]. Most of them cover
the general case of well defined objects, full of corners and nor-
mal lighting conditions. The low light conditions in the simu-
lator and the face smoothness force the use of correlation tech-
niques. Classical invariant descriptor algorithms do not provide
good results.

Feature matching performance is sensitive to different effects
depending on the size of the patches used. If a feature changes
its appearance because of projection, it works better to match
small patches of the image, for which the changes will be more
homogeneous than for bigger ones. On the other hand, if the
image is not well focused, using bigger patches is more ade-
quate, in order to reduce the number of incorrect matches due
to repetitive texture patterns in the face.

As a convenient solution, we characterise each feature tex-
ture by three patches of the same scale and different size centred
on the feature, and add the correlation of the three patches.

Let xr
i = (ur

i , v
r
i ) be a feature candidate or interest point on

the initial right image,Ir
0, andQr

i (m) = Q(xr
i , sm) be a patch

on Ir
0 aroundxr

i of size sm ∈ R
2. To find its corresponding
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(a) xr
j andxr

i on Ir
0 (b) xl

i on Il
0 (c) xr

j on Il
0 rejected

Figure 3: (a) Two feature candidate on imageIr
0. (b) Correct matching (c)

Incorrect matching.

xl
i on imageIl

0, three patches of different sizes are defined,
Qr

i (m), m = 1 . . . 3. Then, the three patches are matched
over a search area of sizessearchon Il

0, producing matching re-
sultsr l

i,m(u, v) respectively, all of them of the same size. Zero-
mean normalised cross-correlation was used to compare the
patches [40]. The search areassearch, and consequently the size
of the correlation results, is defined as a region seven pixels
wide around the epipolar line onIl

0 corresponding to the point
xr

i , and it is independent of the sizesm of the patch. The corre-
lation result is expressed as

r l
i (u, v) =

3
∑

k=1

r l
i,m(u, v). (2)

The template matching problem can then be formulated as find-
ing the location (u, v) in the imageIl

0 that maximises the objec-
tive function

xl
i = (ul

i , v
l
i) = arg max

u,v
(r l

i (u, v)). (3)

To ensure the robustness of the feature and to minimise match-
ing error, candidate points which do not meet the condition

r l
i,m(u, v) > htc, m= 1 . . . 3, (4)

are rejected, wherehtc is the matching threshold, set to 0.5 at
the stereo matching step. This restriction helps reducing the
number of false alarms.

Figure3 depicts the matching results for two different inter-
est points (a). The three graphs in (b,c) represent the corre-
lation result of the three patches along the epipolar line. In (b)
the correspondence is correctly detected and matched, while (c)
depicts a failed matching because the smallest patch correla-
tion result is below the threshold, and consequently the interest
point is rejected. The three concentric boxes are the three patch
sizes for the texture onIl

0. Since we are looking for stereo cor-
respondence, the search area is restricted to the epipolar line
(horizontal line in the images). The matching result is given by
the maximum of the black circle marked line. The patch sizes
ares1 = 21× 21,s2 = 41× 41 ands3 = 61× 61.

4.3. 3D Face Model

The 3D coordinates of the features are recovered using stereo
equations and the calibration parameters of the stereo rig,
knowing its 2D projection points on the two camera images of
the stereo correspondences. After the stereo reconstruction, we
obtain an initial set ofn′ 3D points

{Xi}i=1...n′ . (5)

From the initial set ofn′ points, some correspondences may
be false alarms, that is, erroneous matched interest points, and
must be filtered out before generating the model. The filter-
ing process takes into account face geometrical constraints, like
shape and position to ensure the rejection of points outsidethe
face bounds.

4.3.1. Cylinder Model Fitting and Feature Self-Occlusion
One of the common problems to face pose estimation sys-

tems based on tracking methods is self-occlusion. The face
model features can self-occlude when the head turns over a cer-
tain angle, so some of the model points may not be visible. To
detect these features in advance, a hidden-point pattern iscre-
ated during model initialisation. Each feature is associated to
two limit rotation angles. Within these angles, the featureis as-
sumed to be visible. When the face rotation angle is over the
limit angles of a point, it is considered to be hidden and it isnot
used for tracking and pose estimation.

Figure4(a)shows the used 3D coordinate system. To create
the hidden-point pattern, a vertically oriented cylinder is ad-
justed to the{Xi}i=1...n′ feature coordinates [41], as we show in
Figure4. The minimisation is implemented inside a RANSAC
loop to avoid fitting the cylinder to the most extreme points,
such as those of the nose. The outliers thresholdhCyl RANS ACis
chosen small enough so that nose points are outliers to the ini-
tial minimisation. On each RANSAC iterationt, a groupN (t)

of seven random points is generated, and a cylinder is adjusted
to minimise the error function

E(t) = min
θ

∑

k∈N (t)

Ek(θ)
2, (6)

where
Ek(θ) =

√

(x− xk)2 + (z− zk)2 − r (7)

is the individual 3D point error function andθ = (x, z, r) is the
parameter list in the minimisation. These parameters represent
the centre in the (X,Z) plane and the radius of the fitted cylinder.
After each iteration, inliers are calculated as

I(t) = {Xi} : Ei(θ)
2 < hCyl RANS AC, i = 1 . . . n′, (8)

and the best iteration is chosen to maximise the number of in-
liers. After the RANSAC has found the largest set of inliersI,
a new minimisation is executed using all these inliers to findthe
best set of parametersθo = (x0, z0, r0):

θo = arg min
θ

∑

k∈I

Ek(θ)
2 (9)
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mo

+X

45o

Occluded

points

(c) Partly occluded face

Figure 4: Circle fitted to the face to get the limit angles.

All the angles have an offset inherited from the initial model
rotation offset. Each point of the model is considered hidden
when its angle with respect to the initial model rotation vector
~V0 exceeds±60◦ degrees.

The proposed self-occluding model of the face has several
advantages. Although the exact occluding angle for each fea-
ture is not known, since detailed geometry of the face is not
computed, the self-occluding model gives a prediction about
when this is likely to happen. This prediction allows to reduce
the number of erroneous feature matches at the tracking stage
caused by features that are occluded. Finally, the self-occluding
model also reduces the computational cost, since all the features
that are occluded are not processed.

4.3.2. Model Formation
Initially, n′ correspondences were extracted, of which only a

set ofN0 are correct and used to form the modelM. The model
centre is set tom0 = (xo, yo, zo), where (xo, zo) are obtained
from the cylindrical model fitting, andyo is set to

yo =
1
N0

∑

i∈M

yi (10)

After computingm0, those 3D points for which the distancedi

to m0 is outside a given range are rejected, i.e., the points are far
from the 3D cylinder surface, typically 50 mm< di < 120 mm,
since these points are probably outliers.

The correct correspondences are sorted and translated from
camera coordinate frame to head coordinate frame reference
system to form the model.

X(M)
i = Xi −m0 (11)

Each model featurei is formed by the 3D point coordinateX(M)
i

and a clusterCi of appearance descriptors obtained from the 2D
location of the interest points from which the feature was ex-
tracted on each camera. Since correlation is being used for fea-
ture tracking, following discussion in Section4.2, the appear-
ance descriptors which form the clusters are the biggest sized
patches captured from the images, and will be calledtextures
hereinafter, denoted as{Tr

i ,T
l
i}. Smaller sized patches can be

extracted by subsampling the biggest 2D image patch. These,
however, are not the only features which form the model, since
it expects new ones, up toN, to be added during tracking to
reveal parts of the face initially occluded. Therefore, themodel
is formed as

Ci = {Tr
i ,T

l
i}, (12)

M = {X(M)
i ,Ci}i=1...N0,...N, (13)

whereM is the 3D face model andX(M)
i are the 3D points of the

model in the head coordinate frame. Initial head pointing vector
is defined as~V0 = (0,0,1), with origin in the model centrem0,
and referenced to the right camera frame system.

The coordinates of the model{X(M)
i } are initially set rigidly,

and the distances between them are constant. However, meth-
ods to dynamically adjust{X(M)

i } and{Ci}, that is, model struc-
ture and appearance, and to extend the model will be presented
in section5.
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(a) Set of projections{xl
i,} overIl

0. *Note: The image grey scale
has been corrected for printing clearness

(b) 3D face model,M = {X(M)
i }i=1...N

Figure 5: Feature projections and created 3D face model.

Figure 5(a) depicts the projectionsxl
i, over the camera im-

agesIl
0, and Figure5(b) shows an example of an automatically

generated model.

5. Face Pose Estimation with Model Correction

This section presents the frame to frame execution of the al-
gorithm, which involves the face tracking, pose estimation, fea-
ture templates updating and model corrections processes. Fig-
ure6 depicts a flow chart of this process.

5.1. Feature Tracking

The matching technique that we have used for frame to frame
feature tracking is the same used for stereo matching: the mul-
tisize patch correlation, described in section4.2. The only dif-
ference is a more restrictive correlation threshold to minimise
tracking error and outliers. In Equation (4), htc is now set to
0.7.

Stereo Image

Acquisition

 Frontal face

detectors (V&J)

Tracking

(Mulsize matching)

Pose Estimation

(LM

+ RANSAC)

Pose

Correct?
 no

 Yes

3D Model

extension

3D Model correction

(Bundle Adjustment)

Stereo Image

Acquisition
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Figure 6: Schematic flow chart of the face tracking and pose estimation algo-
rithm.

5.2. Feature Re-Registering Proposal

As the head rotates, feature appearance changes to levels at
which it is not possible to establish a correspondence over the
initially registered feature textures. Some algorithms proved to
deal better with rotations than others, but none of them is ca-
pable of finding the correspondences under wide rotations ifno
extra information is provided by other means. As face features
are not planar in shape, in general it is not a good solution to
try a template warping. Moreover, this process is costly, and
often needs somea priori information about the orientation of
the patch in the 3D space.

To deal with feature appearance changes because of 3D rota-
tions we have developed a newre-registeringtechnique based
on using different view-angles of the face from the two cam-
eras. The idea is to capture new textures from feature patches
and to store them in the model when we know that the pose
estimation error is the lowest possible. At the model creation
step, images patches with different view-points are captured
from both cameras, and stored in the model. Instead of using
disjointed appearance models for each camera, the stored tex-
tures are grouped together for each feature in a cluster. At the
tracking stage, some elements of the cluster are correlatedin
the image, and the stored texture that gives a higher correlation
value is used for feature localisation [22].

Figure7 depicts a comparison of the mean feature localisa-
tion error using patches from one camera or from both. This
error is calculated as the mean of the localisation errors for all
the features which are not hidden and that have been correctly
tracked, for a certain face rotation. The first curve shows the
mean error using only the initial texture captured with one cam-
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era in the correlation step. The second curve shows the mean
error if we take the best correlation result of the initial textures
captured on each of the cameras. As we can observe, the local-
isation error is drastically reduced and the tracking is improved
by using a cluster that contains the different textures captured
from both cameras. The dashed vertical line shows the an-
gle between the two cameras from a distance of approximately
90 cm, at which the face is usually located. Localisation error
has a minimum precisely at these rotation angles, because the
view-point of the face from one camera is the same as the view-
point from the other camera after a rotation of approximately
15◦. Figure7 shows that the optimal angle to perform re-regis-
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Figure 7: Comparison of localisation error using the textures from one or the
two cameras in a cluster.

tering is equivalent to the camera separation, because withthis
yaw rotation the localisation error is minimal. At these rota-
tions, new textures from the feature patches on the image can
be captured and stored in the model, since it is at this rotation
when the localisation error of these patches is likely to be min-
imal. Repeating this process all over the yaw rotation range,
tracking error can be kept very low under full range rotations.

Following this scheme, new feature appearances are stored
in clusters at certain anglesα j , from both camera frames. Let
Ti j be a stored texture for featurei and view-point angleα j ,
no matter from which camera it was captured. For each feature
point i belonging to the model, a clusterCi is stored with feature
textures from different view-points,j, as

Ci = {(Ti j , θi j )}, j ≥ 0. (14)

The textureTik used for correlation at a certain framet to search
for the feature location in the tracking process will be

Tik : k = arg min
j

(Ti j −Qi,t). (15)

It is important to notice that the pose is estimated for all ro-
tation angles. However, the re-registering technique can only
be performed for yaw rotations because the cameras are placed
horizontally. Roll and pitch angles are also estimated, although
face appearance templates are not updated for these rotation an-
gles. However, these rotations are smaller compared to yaw,
and consequently they are not a big issue in the re-registering
technique.

Let P0 be the 3D model pose att = 0. From this pose, a
model pointXi projects with view-point angleα0 at xr

i,0 on im-
ageIr

0. Qr
i,0 is the patch around this point seen from right cam-

eraCr . We assume thatP0 is correct by definition, since it is the

initial 3D model pose. The textureTi0 = Qr
i,0 from featurei is

stored to the cluster. Similarly,β0 is the projection angle of the
feature to the left camera andTi1 = Ql

i,0 from imageIl
0 is also

stored to the cluster. This process can be followed in Figure8
1©, which illustrates the re-registering mechanism.

Now, let the face rotate to its left for a certain time after ini-
tialisation and model creation have finished. LetP1 be the pose
at a timet1 for which the projection angle,β1, of model point
Xi into the other (left) camera imageIl

t1 is similar toα0, or more
precisely, lower than an error threshold

ǫ > β1 − α0. (16)

If this is the case, the patchQl
i,1 should be very similar to the

storedTi0, previously captured from the other camera, since the
projection angles to the respective cameras are the same. Thus,
now Ti0 can be used to track the new position ofxl

i,1 on image
Il

t1 more accurately sinceTi0 has the same view-point thanQl
i,1,

and we previously assumed that this texture is correct. (Figure8
2©)

At this time, the localisation error is expected to be minimal,
and consequently it is convenient to re-register the texture of
featurei. A new Ti3 = Ql

i,1 is stored to the cluster, captured
from the left camera, which should be very similar toTi0.

The anglesα j andβ j are not the same for all the features at a
certain frame. However, in practice they are very similar since
the size of the face compared with the distance to the camera
is small. This means that the framet1 can be chosen so that
condition in (16) is met for all the features,

t1 :
i=N
∑

i=0

|βt1,i − αt0,i | < ǫ
′. (17)

Error plot on Figure7 shows that a poseP1 exists which sat-
isfies this average minima in localisation error. A minimum in
average localisation error leads to a minimum in pose estima-
tion error, at the cost of a slight higher error in the captured Ti ,
sincet1 does not minimise (16) for every single feature at a sin-
gle frame, but minimises the sum of all of them. This condition
implies thatP1 error is also minimal att1.

Although theP1 error is not zero at framet1, it is minimum,
so it is the best moment to register a texture from cameraCr .
The 2D positionxl

i, of the feature is translated to the right cam-
era frame system,xr

i,, knowing P1. From this location inIr
0

another new textureTi2 = Qr
i,1 is also stored to the cluster.

Again, after some rotation, there is a timet2 with poseP2 for
which Equation (17) is minimal,

t2 :
i=N
∑

i=0

|βt2,i − αt1,i | < ǫ
′, (18)

and the last stored texture fromCr , Ti2, can be used to accu-
rately search forQl

i,2 in imageIl
t2 on cameraCl (Figure8 3©).

This process repeats over the whole yaw rotation range. If
the face is rotating to its left, the cameraCl is mostly used for
tracking andCr to anticipate the view-point thatCl will have
after a small further yaw rotation. Similarly, the process re-
peats in the opposite direction, interchanging the functions of
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Cr andCl . This procedure generates a cluster as described in
Equation (14) of stored textures at discrete angles

α j ≈ j × θc, j = 0,±1,±2, ..., (19)

where the angleθc is the average camera separation with respect
to the driver’s face.θc ≈ 15◦ for our camera layout.

T
i,0

Ti,4 T
i,1

T
i,3

Ti,5

Ti,2

3

1

��

Figure 8: Re-registering process when the face is rotating to its left.

Figure9 shows the evolution of the correlation results for the
tracking of xr

i,t and xl
i,t of a featureXi over the right and left

images when the face is rotating to the left. The graph shows
the correlation peaks produced forxr

i,t when re-registering takes
place, at steps of approximately 15◦. As for the graph ofxl

i,t,
its minima represent the points at which the texture used for
tracking switches fromTi j to Tik, j , k. This happens at±7.5◦

from the re-registering rotations. Similarly, if the face were
rotated to the right, figure9 would be symmetric, interchanging
the roles played by the cameras.
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Figure 9: Correlation result of a feature patch for right andleft images in a video
sequence in which the face rotates to the left after initialisation. In the graph,
times advance as the rotation angle increases. The peaks in the right image
graph represent the moments at which re-registering happens.These peaks are
not exactly one because of driver’s movement right after the calibration and
because not all the features meet the conditions to be re-registered.

5.3. Pose Estimation

After the position of the tracking points has been updated for
the left and right frames, the 3D face pose is estimated using
the set of correspondences (X(M)

i ⇔ x{r,l}i,t ) of each feature, i.e.
the set of correspondences between the 3D points and their 2D
projections over one or both of the camera images.

Whether{xr
i,t}, {x

l
i,t} or both will be used to extract the pose

depends on the pose estimation uncertainty for each frame and

tracking error derived from the previous tracking step, as shown
in Figure9. If the head is rotating left, the tracking and subse-
quent pose estimation is performed over the left image. When
the condition in Equation (17) is met, the resulting pose is
translated to the right camera, used to project the features3D
points overIr

t to accurate obtain{xr
i,t}, and the textures from the

patches around{xr
i,t} in the image are re-registered. If the head

is moving randomly or it is static, pose is estimated from both
frames, and the results are averaged.

Pose is estimated using the Levenberg-Marquardt (LM) algo-
rithm. The estimation is formulated as a nonlinear least squares
problem, minimising the following cost function considering
the right camera as reference as

fLM = arg min
{R,T}

∑

i

||xr
i − pro j(RXa + T)||2, (20)

wherepro j() is the camera projection function and (R,T) are
the rotation and translation matrices to be estimated. The same
minimization problem can be obtained considering the left cam-
era as the reference one.

The poseP = {R,T} indicates the position of the central point
of the model regarding the camera coordinate system, and its
rotation from the initial model. The 3D face pose is computed
individually for each camera frame in a RANSAC framework.
In each RANSAC iteration, seven points are randomly selected
from the model and used to calculate the pose (R andT ma-
trices) using LM. With thisR andT, all 3D visible points of
the model are projected over the image plane and the Euclidean
distance from the tracking point to the corresponding projected
point is calculated. If this distance is less than a threshold,
this point is considered to be correct, and marked as an inlier.
RANSAC iterates until the mean reprojection error drops bel-
low 3 pixels, or until it has been iterating for approximately 15
ms, so real time performance is not compromised. The outliers
error threshold is set big enough to allow certain face deforma-
tion. In our case, it is set to 30 pixels.

This process is performed over the frame used to track the
points. In case both frames are used, the final pose estimation
is calculated for each one, and the result given as the weighted
sum, according to the next expressions:

R=
Rr · Inl

Inl + Inr
+

Rr
l · Inr

Inl + Inr
, if Inr , Inl > Inmin (21)

T =
~Tr · Inl

Inl + Inr
+

Tr
l · Inr

Inl + Inr
, if Inr , Inl > Inmin (22)

where Inl and Inr are the number of inliers from the left and
right pose estimations, as determined with RANSAC.R andT
are the resulting pose estimation.Rr andTr are the pose es-
timation from the right camera, andRr

l and Tr
l are pose esti-

mation from the left one, translated to the right one using the
corresponding stereo equations and calibration parameters. In
case the number of inliers of any of the images is less theInmin

threshold, that estimation is discarded and the estimationof the
other camera is used.
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5.4. Model Extension and Correction
The 3D model was created using the initial pair of stereo im-

ages of a frontal face. This model is incomplete and the points
may contain noise. During the execution of the algorithm, this
model is extended and corrected adding new information that
can be extracted from successive pairs of stereo frames.

In the event of tracking loss, face detection is performed,
using V&J algorithm to find the presence and position of the
driver’s frontal face. When the face is found, we assume a
frontal face and reproject the model points to the area wherethe
face has been found. We search for the exact position of each
feature using wider search areas for each feature than thoseused
in the tracking stage.

5.4.1. Model Extension with New Feature Points
Self-occlusion is a drawback of creating the 3D model from

a initial single pair of frames. For yaw rotations wider than
±400 approximately, most of the initial points of the model are
occluded. The accuracy of the pose estimation depends on the
number of features, and thus a model extension procedure is
needed. New features from initially concealed face areas are
added to the model when all of the next conditions are met:

1. New parts of the face are exposed to the cameras.
2. Pose estimation uncertainty at the current frame is low.
3. The Bundle Adjustment (BA) process has finished correct-

ing the 3D coordinates of previously added points.
4. The number of visible features is higher than a minimum,

to ensure algorithm robustness.

The same technique explained in Section4.3is used to detect
and obtain the 3D coordinates of the new points to be added.

The 3D coordinates of the new points are referenced to the
camera coordinate system. They must first be converted to the
model reference system, which is now defined as its estimated
pose,Pt.

5.4.2. Model Correction Based on Bundle Adjustment
The 3D points taken during model creation and added later

are subject to error derived from stereo correspondences. In
addition, the newly added points to the model also inherit the
error of the pose estimation at the frame of addition. In order
to get a better fitting of the model to the face, a Bundle Adjust-
ment (BA) optimisation is used to refine the 3D model. This
corrects the 3D point coordinates of the model and the poses at
which any point has been added.

Bundle Adjustment is a very popular and well-known tech-
nique used in computer vision, and in particular for Structure
from Motion (SfM) problems [42, 43, 44]. BA provides an
iterative optimisation of the poses and 3D points involved in
the reconstruction. Roughly speaking, BA is a non-linear least
squares problem and consists in the minimisation of the sum
of squared reprojection errors. Furthermore, if the noise in the
image error is Gaussian, then BA is theMaximum Likelihood
Estimatoryielding the optimal least squares solution. A com-
plete survey on BA methods can be found in [34].

The main problem of BA-based methods is that their speed
can be very low when the number of parameters is high, since

for solving the full optimisation problem it is necessary to
perform the inversion of several linear systems whose size is
proportional to the number of estimated parameters. To save
on computational load, this stage is only applied at certain
keyframes, tw, when a minimum movement has been detected
in the pose, and only during certain time after model creation.
The process is also executed after points have been added to
the model. Each keyframe’s pair of images are saved, along
with the 2D projectionxr

i,tw
, xl

i,tw
of the model points and the

estimated posePtw.
The BA process refines the values of the 3D model points

Xi (i = 0 . . .N) and the past pose estimatesPt j
( j = 0 . . .w),

minimising the cost functionftw which is the sum of the re-
projection errors of the 3D model pointsX and estimated poses
up to keyframetw. The error function to minimise in BA is
defined as

arg min
P,X

∑

Pt j ∈{Pt0 ...Ptw}

∑

Xi∈{X0...XN}

∥

∥

∥ǫ
t j

i

∥

∥

∥

2
(23)

where
∥

∥

∥ǫ
t j

i

∥

∥

∥

2
is the square of the Euclidean distance between

the estimated projections of the 3D model pointXi through the
posePt j and the observed stereo measurementsxr

i,t j
, xl

i,t j
from

the posePt j . The process extends until the re-projection errorǫ
falls below a pre-defined threshold.

Figure10 shows the initial model and added points, and the
corrections carried out to the model by BA. It can be noticed
how corrections are specially needed for the new added points
on the laterals of the face.

(a) Original and extended model (b) Corrected model

Figure 10: Initial 3D model, extended one, and BA optimisation. The red lines
shows the corrections done by BA. It can be observed how the lateral points
suffer bigger corrections. Points 39, 43 and 44 on the right lateral exhibit im-
portant corrections.

6. Experimental Tests and Results of the Driver Distraction
Monitoring Application

The test environment is a naturalistic truck simulator, shown
in Figures11(a,b), which very accurately recreates day and
night time driving conditions. The simulator itself is a real
truck cabin, motorised with actuators to simulate driving mo-
tion. Three wide projectors outside the cabin show the scene.
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The two lateral rear mirrors are also screened, so the drivercan
look at them to check the traffic behind.

The stereo cameras have a base line of 20 cm, and are located
over the dashboard behind the driving wheel, at a distance of
between 60 to 100 cm to driver’s head. Camera views cannot
be parallel, but have a little convergence towards the centre, to
point the driver’s face, making and angle of 15◦ between them.

6.1. Ground-Truth

The Ground-Truth (GT) data have been obtained for six dif-
ferent users, using video sequences more than ten minutes long
each. The sequences were recorded within a very high immer-
sion environment and simulating common driving disturbances,
such as phone calls, handling the GPS and takeovers, which re-
sult in frequent head movements.

Two different methods have been used to generate the GT
data. In some of the videos, we obtain the GT using a light
pattern installed on a tiara, or a calibration pattern attached to
the head, as shown in figures11(c,d). The GT is calculated
using MATLABr, and its output was estimated to have an error
below 0.5◦. In both cases, the pattern is adjusted to the head,
and treated as a disembodied rigid object.

The GT does not provide data on local face features, so this
data has been extrapolated from the pose registered in the GTby
model point reprojection. Variations of the face due to gestures
changes are treated as tracking errors.

6.2. Hardware and Software Requirements

The capture system is formed by two synchronised Basler
Scout family FireWireTM cameras and two pulsed IR illumina-
tors synchronised with the cameras. The captured video is high
resolution grey scale data at 30 frames per second. The face
size is around 300× 350 pixels.

The algorithm was tested in a Intelr CoreTM2 Quadr

Processor running Kubuntu 9.10, and equipped with an ATI
RadeonTM HD 4500 Series graphic unit from AMD. All code
is written in C++, and parallelised using threads. Most of
the specific vision operations have been programmed using the
OpenCV library [45]. BA and LM algorithms are coded using
the libraries provided by Lourakis and Argyros [46, 47].

In Section6.6, we show a timing evaluation of the proposed
face estimation algorithm with incremental 3D model creation.
In this timing evaluation we show processing times of each of
the main steps of the algorithm.

6.3. Pose Estimation Error Evaluation

The error calculation method used is the same proposed
by [48] and [49]. They introduce a scaling factor in the mea-
surements, which depends on some reference size of the object.
In their work, they use the distance in pixels between the eyes of
the person on the image when the face is frontal to the camera.
This scaling factor compensates for the apparent variationin
size when the person is closer or further away from the camera,
but do not take into account the different size of the face of dif-
ferent subjects. We convert the localisation error to millimetres
using the stereo information, so the error figure is independent

of the distance to the camera and of the face size. The error
measurement can be expressed in millimetres (mm) as

me =
1
n

n
∑

i=1

di , di =

√

(Xz
i − X̄i)T(Xz

i − X̄i), (24)

whereX̄i = (x̄i , ȳi , z̄i)t is the calculated GT position of featurei
andXz

i = (xi , yi , zi)t is its 3D coordinate assumingzi = z̄i . The
conditionzi = z̄i must be applied sincexi = (ui , vi) is estimated
over the camera image projection, and there is nozi informa-
tion.

6.4. Performance Analysis of the Multisize Matching

We have compared the multisize matching proposal with a
classical multiscale matching with Harris detector and with
SURF [50]. Figure 12(a)shows the tracking technique with-
out re-registering, while Figure12(b)shows the same technique
using the re-registering algorithm. We use squared patchesof
size 21, 41 and 61 pixels. Although multisize shows slightly
higher error than multiscale for small rotations, the former out-
performs the second for wider rotations when re-registering is
applied.

As a drawback, mean matching error slightly increases for
rotations below 6◦. This mainly happens because of the influ-
ence of the smallest patches in the less contrasted features. A
small patch contains very little texture information, while a low
contrast feature also contains less information than thosewith
better contrast. For wider rotations this effect is over passed
by the sharpen correlation provided by the small patches. In
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Figure 12: Comparison of tracking errors for different feature tracking methods.
(a) Without re-registering (b) With re-registering.

the comparison with SURF, interest points are extracted from
the face from both camera’s images, and 64-dimensional de-
scriptors are calculated. The SURF tracking error rapidly in-
crease because it fails to extract the correct interest points as
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(a) Inside the truck simulation cabin,
showing camera layout.

(b) View of the road, cameras and GPS
from the driver’s position.

(c) GT using a light tiara. (d) GT using a calibration pattern.

Figure 11: (a,b) Track simulator used to record the video sequences. (c,d) Ground-truth methods.

the face rotates. Figure13shows the stereo correspondences for
the face features obtained with SURF. Another important effect

Figure 13: Stereo correspondences of face features obtained using SURF.

that should be noted is that, despite the re-registering, feature
localisation error is a monotonically increasing function, due to
the accumulated error. The feature tracking stage takes around
14 ms on average for a 30 points model.

6.5. Performance of the Pose Estimation

The last steps of the algorithm are the pose estimation and
model correction process. Figure14 depicts the pose estima-
tion error after LM, with and without BA. POSIT [32] pose
estimation is provided to compare our results with [30].

Figure14 shows the correction effect of the underlying BA
process. Corrections are especially visible for yaw rotations
over 30◦, as model extension takes place in that range of angles.
It can be observed in both graphs that error increases quickly at
that point, even when BA is used, because the addition of new
points to the model also adds some error.

In Table1, we show the pose estimation errors for the three
angles of rotation, measured in degrees. Mean errors are com-
puted for each angle of rotation for different rotation ranges.
Pitch and roll angles exhibit a smaller rotation range than for
yaw, since there are no pronounced head rotations for these an-
gles in the driving experiments. In Table2, we compare the
performance of our proposal with the latest works in the state
of the art.

In this case, mean errors in this table have been computed
as the average error as a function of face rotation. If the mean
errors were averaged over time (average of all individual error
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Figure 14: Pose estimation improvement applying the BA algorithm. The error
results are shown using POSIT and LM.

measurements on each frame), the influence of the most com-
mon poses errors would be higher in the final mean error. Note
that other authors do not specify how they calculate this error
to take into account the fact that the face is most of the time
looking forward.

Because the re-registering technique can not be applied un-
der pitch variations, the system error is higher in this direction,
and it can be observed how it increase for anglesαpitch > 30◦.
Still, the BA slightly improves the results. For roll rotations a
patch warping technique is applied. Consequently, the roller-
ror is lower than pitch error. It was not possible to evaluatethe
error in a wider pitch and roll range because big pitch and roll
rotations are not typical nor natural while driving.

The face pose estimation system has a very low error thanks
to the BA corrections. The error remains low for the full range
±90◦ of yaw rotations. These results show equal or lower errors
than other works in the literature, but with more challenging
scenarios (wide rotation range, low lighting conditions and fast
movements). Figures15 and16 depict some results for small
pieces of videos. Figure17 depicts a challenging sequence of
video in which the driver moves generating bright illumination
in the face, and talks through a microphone to the instructors,
generating occlusions and face deformation.

6.6. Timing Evaluation

In Table3 we show average computation times per each of
the main steps of the face pose estimation algorithm with auto-
matic 3D model creation. As we can observe, the algorithm can
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Rotation BA? α < 15◦ α < 30◦ α < 45◦ α ≥ 45o

yaw no 1.92◦ 2.44◦ 6.72◦ 12.83◦

yaw BA 0.98◦ 1.54◦ 3.04◦ 8.54◦

pitch no 3.82◦ 7.86◦ 8.59◦ -
pitch BA 1.81◦ 4.70◦ 6.34◦ -

roll no 1.27◦ 2.06◦ - -
roll BA 1.16◦ 1.75◦ - -

Table 1: Mean face pose estimation error. The error is dividedinto yaw, pitch
androll , and evaluated in different ranges of the absolute rotation angle in the
ground truth,α.

Rotation mean error Rotation range

Proposal yaw pitch roll yaw pitch roll

Proposed work 3.8◦ 4.26◦ 1.71◦ ±90◦ ±45◦ ±30◦

RVM [51] 4.1◦ 2.3◦ 2.4◦ ±80◦ ±25◦ ±10◦

3D model [10] 3.39◦ 4.67◦ 2.38◦ ±90◦ ±45◦ ±45◦

SIFT [2] 2.44◦ 2.76◦ 2.86◦ ±45◦ ±45◦ ±45◦

PF [25] 2.86◦ 2.34◦ 0.87◦ ±40◦ ±20◦ ±10◦

Table 2: Face pose estimation error comparison with other approaches.

work under real-time restrictions (30 Hz approximately). Fea-
ture detection just takes place at the initialization of thesystem.
Then, once the model is created, we need to perform per frame
feature tracking and pose estimation. The model correctionby
means of BA, is performed only at certain keyframes through-
out the sequence and runs in a parallel processing thread than
the tracking and pose estimation.

Algorithm Step Execution Time

Feature Detection Initialization 15 ms
Model Correction (BA) Parallel threads 200 ms
Feature Tracking

Per Frame 14 ms
(Approximately 30 features)
Pose Estimation (LM) Per Frame 18 ms

Total Per Frame 32 ms

Table 3: Timing evaluation of the proposed face pose estimation algorithm.

7. Conclusions and Future Works

We have implemented a real-time, fully-automatic and user-
independent 3D face pose estimation algorithm based on a set
of face features. The only calibration required is the stereo rig
calibration, which is done offline. A sparse 3D model is auto-
matically created at initialisation, and a technique to refine and
improve the model during the whole execution time has been
evaluated. This model creation extended in time generates a
very accurate model of the face of the subject, providing a very
precise pose estimation. In this sense, we have evaluated how
to initially create a good model and how to extend it with new

features of the face. A bundle adjustment algorithm has been
used to correct the model after point addition. The final result
is an accurate sparse 3D model.

We found that the well-known and extensively used SURF
does not provide good results due to the lack of irregulari-
ties and corners in the face, and the low ambient illumina-
tion. Instead, we implemented amultisizematching technique,
based on Harris interest points and patch correlation. Thistech-
nique joins the goodness of different patch sizes for correlation.
Smaller patches give better performance under rotations, while
being less sensitive to illumination changes. Bigger ones,on the
other hand, are more robust although less accurate. We imple-
mented a new re-registering technique which takes advantage
of the stereo cameras disposition. Using this technique we can
add new features to the model in a consistent way, no matter
whether the driver is in a frontal position or not. This allows for
a full range and very accurate face tracking from -90◦ to +90◦

yaw rotations.
As face rotates, we use the forward camera in the direction

of rotation to capture new texture patches of the features, and
the backward camera to track using the patches that were previ-
ously captured. This means that a texture patch needs to be
tracked only for a range of±7.5◦. For pitch and roll rota-
tion, where the developed re-registering technique can notbe
applied, patch warping could be used in the future.

The system has been evaluated under challenging conditions
and has shown good performance. Results for the proposed
algorithm show a mean yaw rotation error below 1◦ for rotations
in the±15◦ range, and 1.54◦ in the±30◦ range, improving the
results of other works in the literature.
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