
Including transfer learning and synthetic data in
a training process of a 2D object detector for

autonomous driving

Miguel Antunes, Luis M. Bergasa, Javier Araluce, Rodrigo Gutiérrez, J. Felipe
Arango, and Manuel Ocaña

RobeSafe research group, Electronics Department, University of Alcalá, Spain
{miguel.antunes, luism.bergasa, javier.araluce, rodrigo.gutierrez, juanfelipe.arango,

manuel.ocanna}@uah.es

1This work has been funded from Scholarship for Introduction to Research ac-
tivity by University of Alcalá

Abstract. Nowadays the use of deep learning (DL) based systems is
widely extended in several areas such as facial recognition, voice and
audio processing or perception systems. The training process that must
be performed for proper functionality requires a large amount of data
with the required characteristics needed for the task to be executed.
The process of obtaining new adequate training data is complex and te-
dious, therefore multiple techniques such as data augmentation or trans-
fer learning have been developed in order to have a greater amount
of knowledge in the network without the need to search for new data
sources. The aim of this paper is to study the effect of the inclusion of
knowledge from transfer learning in a 2D image detector trained with real
world and synthetic data from multiple sources. The detector that is go-
ing to be trained will be focused on autonomous driving tasks, therefore
we decide to use KITTI as the real world data source and our AD PerDe-
vkit (based on CARLA) and Virtual-KITTI as the synthetic sources.

Keywords: Deep Learning, transfer learning, 2D object detection, simulation,
KITTI, CARLA.

1 INTRODUCTION

In recent years, Deep Learning (DL) based systems have become a fundamental
tool for computer vision tasks, especially thanks to their remarkable performance
improvement and the evolution of the hardware on which they are executed.
The training from scratch of DL based detectors requires a very large amount of
data rich in diverse information, therefore many techniques exist to accelerate
and improve this process. The number of training data can be increased by
using techniques such as traditional data augmentation, which applies geometric
transformations such as rotation or compression to the images, or even using
synthetic data from some source to complement the real data. Another common
approach is the use of transfer learning, in which weights trained on an external



2 Miguel Antunes

database are used to provide initial knowledge to the system to later specialize in
the task to be performed. In this paper we study the effect of using and mixing
several of these methods on the training process of a 2D object detector focused
on autonomous driving tasks (Figure 1). The images must come from specialized
and open-source databases, for this reason the real data used for training, test
and validation comes from two of the most used datasets for this type of tasks:
KITTI [1] and Waymo [2]. On the other hand, one of the most widely used
tools to test the performance of driving architectures in simulation is CARLA
[3], which, using Unreal Engine and ROS, provides realistic looking environments
with accurate information about the vehicle’s sensors and the rest of the elements
of the simulation. Taking advantage of the data provided by CARLA, we have
developed our own ground truth generation tool: AD PerDevkit, which will be
used to obtain part of the synthetic data. The rest of the synthetic images are
obtained from the Virtual Kitti 2 dataset [4][5] which applies a recreation of the
Kitti data in a virtual environment based on Unity [6] from which more synthetic
sequences are generated with different conditions such as weather or time. The
main difference between the two methods is that CARLA is a simulator, which
means that a multitude of tests can be performed on its maps and a virtually
unlimited amount of data can be generated. VKitti, on the other hand, tries to
bring the knowledge provided by a real database to a virtual domain to provide a
better generalization of object characteristics while maintaining similarity with
the original dataset.

Fig. 1: Training, test and validation images mix for 2D object detection.

2 RELATED WORK

2.1 Data augmentation

Data augmentation is one of the most common techniques in DL based system
training. In [7] several traditional methods such as rotation, compression, filter-
ing or color changes are presented along with other state of the art DL based
methods such as Generative Adversarial Network (GAN) or Adversarial Train-
ing. These methods can contribute to the network with generalized knowledge
that helps to improve the results and avoid overfitting with training data. In this



Transfer learning and synthetic data in deep learning 3

paper we will combine synthetic data from various sources with various classic
data augmentation methods such as blur, transformation to grayscale, image
compression or image contrast modification.

2.2 Artificial data from virtual environments

The CARLA autonomous driving simulator [3] is an open source tool that aims
to provide a realistic environment in which to test the performance of complete
autonomous driving architectures. In the case of perception tasks the simulator
provides data from various sensors such as LiDAR, radar or camera with easily
configurable parameters that mimic the real hardware with which you want to
work afterwards. In the case of vehicle camera images CARLA provides differ-
ent formats such as RGB or Depth. The strength of using a simulator as a data
source is the possibility of obtaining new images in a practically unlimited way
from user defined scenarios with parameters such as weather, time, environment
and even the route and speed of the car. There are several tools that help us to
obtain the data we need from the simulator. One of them is AIODrive[8] which
providesa dataset with multiple environments with labeled objects based on di-
rect information from the simulator. The main problem with this dataset is that
it labels objects out of range as it does not take into account the visibility of
the objects relative to the car. The other tool examined is our AD PerDevkit
dataset [9] which extracts information in a similar way to AIODrive but removes
objects that are not of interest for training tasks or are out of range, improving
weak points of the former dataset. The data in our tool is in a similar format to
KITTI with some extra information such as the frame identifier to facilitate the
association with the raw images. The main problem for camera-based detection
from simulation is the visual difference between objects in the synthetic world
and in the real world, although with the advances in virtual environments in
recent years it will become more and more realistic. Another way to obtain syn-
thetic data is presented by Virtual-KITTI [4][5], in which the images provided
have been generated by a semi-automatic procedure that aims to create virtual
environments called ’proxy’ that are clones of a real-world dataset. In this case,
’proxy’ worlds are generated in Unity [6] from several KITTI scenes and trans-
formations are applied to obtain those same environments with different weather
or time of day conditions. Unlike the CARLA approach, this method does not
aim to generate a huge amount of data, but instead uses real images to gener-
ate its clones to help the generalization process of the characteristics from the
original dataset objects.

2.3 Bidimensional state-of-the-art object detectors

Currently there are multipe DL based 2D detectors with state-of-the-art perfor-
mances. Some of the more popular are multi-stage systems such as fast-RCNN
[10] and faster-RCNN [11] or one-stage detectors such as Yolo [12][13][14] and Ef-
ficientDet [15]. Table 1 shows differences between the latest and heaviest models
in Average Precision (AP) on COCO and their inference time.



4 Miguel Antunes

Model COCO AP 0.5 Latency (ms)

Yolov5L 67.3 2.7

Yolov5X 68.9 4.8

EfficientDet D6 71.5 92.8

EfficientDet D7 74.3 153

Faster RCNN 42.7 200

Table 1: Performance of different state-of-art 2D detectors [11][14][15]

Faster RCNN obtains much worse results than the rest of the networks, so
it is discarded. EfficientDet obtains slightly better results than Yolov5, however,
the difference in execution time is very high. Due to the focus on autonomous
driving tasks, low inference times are required, so Yolov5 is chosen as detector.

3 CAMERA DATA

3.1 COCO and Waymo datasets

COCO [16] is one of the largest datasets for general object detection, with 200k
images labeled representing 80 object classes. The authors of Yolov5 provide
weights with a pre-training of 300 epochs on this dataset which will be used in
the training of the paper, particularizing the knowledge only for the class ’Car’.
It should be noted that in order to train with the different datasets, a trans-
formation of the ground truth annotations to the COCO data format has been
performed. Waymo [2] is used to evaluate the trained detectors on a real dataset
different from the ones used for training. This dataset specializes in autonomous
driving tasks, offering data segments recorded by multiple real-world environ-
ments from a vehicle with information from multiple sensors compressed into
multiple files. Camera information was extracted from the files and transformed
into COCO format for evaluation.

3.2 Kitti and Virtual-Kitti datasets

KITTI dataset [1] is one of the most widely used autonomous driving datasets
since its release in 2013. Like Waymo, KITTI provides information from different
sensors on a vehicle moving through real environments. In this paper KITTI will
be used in practically all experiments as the source of real camera data, using
the 4781 images it provides, of which 80% have been used for training, 10% for
validation and the rest for testing. The KITTI labeling format provides object
information such as class, camera visibility, position, rotation, 3D dimensions
and the 2D bonding box. As with the other datasets, only the 2D bounding box
and class information is used, which is transformed into COCO format.

Virtual-Kitti [4][5] (VKitti) uses a semi-automatic technique to generate vir-
tual environments on Unity’s engine based on camera information provided by
KITTI. These ’proxy’ environments are modified to reflect different weather
conditions or time of day, allowing the trained DL model to better generalize



Transfer learning and synthetic data in deep learning 5

information about the original dataset, which in this case is KITTI. The first
version of the dataset was released in 2015 and provided visual information and
the ground truth of the objects, while the second one has been released in 2020
and improves the graphic section as well as providing additional stereo camera
and ground truth information such as class segmentation or depth.

3.3 AD PerDevkit dataset

The synthetic data from the CARLA simulator is obtained through our AD
PerDevkit dataset [9]. The synthetic data coming from the CARLA simulator
are obtained through our tool. Using the ROS bridge the information from the
sensors is exported, both the raw data (images, LiDAR pointcloud and Radar
pointcloud) and the labeled objects in a csv with the required information such
as each object class or 2D bounding box.

The dataset is composed of 11 challenging scenes recorded in 5 towns included
in default CARLA under different weather conditions, each containing between
1400 and 3200 frames with full set of annotations. Only about 10000 daytime
synthetic images will be used to maintain the similarity with KITTI, which only
has daytime images.

(a) (b)

Fig. 2: a) Comparison between original KITTI, VKITTIv1 and VKITTIv2 and
KITTI. b) CARLA 2D ground truth example.

4 2D OBJECT DETECTION ARCHITECTURE

The detector that is going to be trained is Yolov5 [14] due to its good results
and the flexibility it offers thanks to its multiple models. The base architecture is
the one shown in Figure 3, with an image input size of 640x640 and using layers
such as CSP Bottleneck with 3 convolutions (C3) or Spatial Pyramid Pooling
(SPPF). This architecture scales following the idea presented in EfficientDet [15]
to offer various performance and execution times, shown in the table 2.

From the data shown in table 2 it was decided to use the Yolov5L model
as it offers similar results to Yolov5X with half the parameters in the network,
and the Yolov5S model as it is the lightest model without taking into account
Yolov5N which does not offer sufficient results for the task to be performed.



6 Miguel Antunes

Model
mAP val

0.5
Speed V100 (ms) Params (M)

Yolov5n 46.0 6.3 1.9

Yolov5s 56.0 6.4 7.2

Yolov5m 63.9 8.2 21.2

Yolov5l 67.2 10.1 46.5

Yolov5x 68.9 12.1 86.7

Table 2: Yolov5 models comparison. Validation on COCO val2017.

Fig. 3: Yolov5 detector layers

5 EXPERIMENTAL RESULTS

Multiple experiments have been conducted to evaluate the effect of using syn-
thetic data with other techniques such as transfer learning or classical data
augmentation to improve the network performance. All training processes are
performed on a GTX 1080Ti with 25 epochs and a batch size of 32 for Yolov5L
and 64 for Yolov5S models, applying the geometric data augmentation tech-
niques presented in 2.1 and calculating the precision, recall and mAP metrics.
The tables presented below highlight in one color the best results for each case,
with black being the best using the 100% of Kitti training data, orange using
the 50% and blue using the 25%.

5.1 Training without pretrained weights

The first experiment was to train the detectors from scratch, in other words,
without any prior knowledge of COCO. The training was performed on separate
datasets and various combinations with the multiple synthetic sources.

The table 3 shows the results of training on individual databases without
prior knowledge. As expected, the best results are obtained by evaluating on



Transfer learning and synthetic data in deep learning 7

the same dataset used for training. With no prior knowledge, the network only
has the information of the characteristics of one database, which can lead to
overfitting on the training data, deteriorating the metrics on the rest of the
datasets.

Model Train Test P R mAP

Yolov5S

Kitti
Kitti 0.887 0.807 0.908

Waymo 0.520 0.294 0.327
Carla 0.298 0.303 0.172

Carla
Kitti 0.152 0.058 0.043

Waymo 0.016 0.029 0.013
Carla 0.640 0.890 0.767

VKitti
Kitti 0.671 0.380 0.425

Waymo 0.029 0.053 0.016
VKitti 0.973 0.921 0.980

Yolov5L

Kitti
Kitti 0.924 0.869 0.943

Waymo 0.618 0.350 0.409
Carla 0.276 0.198 0.154

Carla
Kitti 0.078 0.077 0.038

Waymo 0.023 0.023 0.013
Carla 0.621 0.893 0.780

VKitti
Kitti 0.681 0.416 0.462

Waymo 0.048 0.047 0.017
VKitti 0.982 0.941 0.984

Table 3: Training results on one database from scratch

Tables 4 and 5 show the results of training by combining a percentage of
KITTI data with each of the synthetic datasets.

Using KITTI and CARLA (table 4) the detector can generalize the knowledge
better than if it is trained only on one database, obtaining the same or better
results on these datasets even than in the case of training and evaluating the
network with only one of them (table 3). For the Yolov5L model, KITTI improves
from a mAP of 0.943 to 0.949, thus improving performance on the real data base,
which is the desired effect.

In the case of using VKitti and KITTI (table 5) both datasets have more
similar features since VKitti is built from KITTI, this is reflected in the re-
sults of evaluating on KITTI, which improve even more than training with
CARLA, reaching a mAP of 0.961 if we use Yolov5L and train with both com-
plete datasets.

It is worth noting that Waymo also benefits slightly from training with mixed
datasets, but its results still leave room for improvement.

5.2 Transfer learning experiments with pretrained weights

Once the training tests had been performed without the knowledge from COCO,
the training processes were repeated starting from the pre-trained weights.



8 Miguel Antunes

Model Train Test P R mAP

Yolov5S

Kitti 100% + Carla
Kitti 0.884 0.853 0.925

Waymo 0.533 0.315 0.352
Carla 0.669 0.879 0.776

Kitti 50% + Carla
Kitti 0.925 0.873 0.901

Waymo 0.755 0.519 0.605
Carla 0.699 0.796 0.811

Kitti 25% + Carla
Kitti 0.831 0.755 0.841

Waymo 0.476 0.268 0.292
Carla 0.675 0.804 0.724

Yolov5L

Kitti 100% + Carla
Kitti 0.933 0.874 0.949

Waymo 0.598 0.350 0.356
Carla 0.687 0.767 0.772

Kitti 50% + Carla
Kitti 0.910 0.841 0.930

Waymo 0.521 0.277 0.314
Carla 0.657 0.775 0.753

Kitti 25% + Carla
Kitti 0.873 0.794 0.889

Waymo 0.506 0.263 0.303
Carla 0.652 0.769 0.723

Table 4: Training results on CARLA and KITTI from scratch

Model Train Test P R mAP

Yolov5S

Kitti 100% + Vkitti
Kitti 0.913 0.850 0.936

Waymo 0.578 0.348 0.395
Vkitti 0.968 0.926 0.981

Kitti 50% + Vkitti
Kitti 0.889 0.803 0.901

Waymo 0.615 0.347 0.407
Vkitti 0.968 0.900 0.970

Kitti 25% + Vkitti
Kitti 0.864 0.758 0.862

Waymo 0.580 0.353 0.404
Vkitti 0.958 0.919 0.979

Yolov5L

Kitti 100% + Vkitti
Kitti 0.943 0.900 0.961

Waymo 0.652 0.374 0.433
Vkitti 0.987 0.931 0.984

Kitti 50% + Vkitti
Kitti 0.918 0.878 0.940

Waymo 0.644 0.360 0.420
Vkitti 0.975 0.939 0.982

Kitti 25% + Vkitti
Kitti 0.887 0.820 0.908

Waymo 0.637 0.325 0.385
Vkitti 0.978 0.945 0.986

Table 5: Training results on VKitti and KITTI from scratch

To evaluate the initial level of knowledge provided by the pre-trained weights,
an initial evaluation was performed on the real-world datasets used to evaluate
the results of the other experiments: KITTI and Waymo.

The table 6 shows that the pre-trained weights lead to better performance
results in Waymo compared to those on KITTI. This may be due to the fact that



Transfer learning and synthetic data in deep learning 9

Model Test P R mAP

Yolov5S
Kitti 0.753 0.531 0.590

Waymo 0.815 0.650 0.763

Yolov5L
Kitti 0.743 0.567 0.609

Waymo 0.778 0.692 0.784

Table 6: Pretrained weights evaluated on KITTI and Waymo

Waymo images are more similar to those used for pre-training in COCO than the
ones in KITTI. Despite this, it is observed that COCO provides a high degree of
initial knowledge for both datasets, since before any training is performed, mAP
values of 0.78 for Waymo and 0.6 for KITTI are already obtained. The results
of training on a database starting from the COCO weights are represented in
the table 7, in which each model has been trained on the synthetic datasets and
on KITTI and various percentages of its data to test the metrics when having
limited real-world data. The evaluation is performed on Waymo and KITTI
and a synthetic database depending on the training case. Comparing with the
results of training without COCO weights (table 3) the improvement is pretty
evident. Even training with exactly the same data leads to results improvement,
for example Yolov5L with KITTI reaches a mAP of 0.943 which rises to 0.969
with pre-training.

For the case of training KITTI in combination with CARLA (table 8) there
is a slight deterioration of the results with respect to training from scratch. The
reason for this is that in the case of training from scratch (table 4) there is some
overffiting since it is not able to generalize the information correctly, increasing
the metrics on the training data but worsening in other datasets (Waymo).

Training with a combination of KITTI and VKitti (table 9) achieves sur-
prising results due to the generalization of information induced by the synthetic
dataset. First of all, it manages to improve the results compared to not using
transfer learning (table 5) especially in the cases with lower KITTI data pro-
portion. For example, for Yolov5L with only 25 percent of KITTI increases the
mAP from 0.908 to 0.931 without affecting Waymo as much (decreases only to
0.679 instead of the 0.385 it had without transfer learning). On the other hand,
this combination of data also achieves better results than training with transfer
learning but only on the equivalent single database (table 7). The difference in
results increases again as the KITTI data decreases, resulting in an 5% higher
mAP when mixed with the 25% of KITTI. From this data it can be deduced
that adding VKitti to KITTI training will always lead to improved results.

It should be noted that some tests have also been performed in which syn-
thetic data was used for training and then fine tuning was performed with KITTI
data, but they do not provide any improvement in results, so they have not been
incorporated. For example training on CARLA and performing fine tune on all
KITTI training images results on exactly the same mAP as training only on
KITI.



10 Miguel Antunes

Model Train Test P R mAP

Yolov5S

Kitti 100%
Kitti 0.903 0.823 0.911

Waymo 0.763 0.559 0.647
Carla 0.504 0.541 0.419

Kitti 50%
Kitti 0.862 0.668 0.807

Waymo 0.793 0.568 0.674

Kitti 25%
Kitti 0.783 0.654 0.751

Waymo 0.789 0.586 0.695

Carla
Kitti 0.638 0.427 0.459

Waymo 0.741 0.531 0.617
Carla 0.691 0.763 0.762

VKitti
Kitti 0.788 0.586 0.632

Waymo 0.820 0.594 0.709
VKitti 0.942 0.913 0.970

Yolov5L

Kitti 100%
Kitti 0.953 0.910 0.969

Waymo 0.776 0.582 0.674
Carla 0.409 0.559 0.439

Kitti 50%
Kitti 0.921 0.867 0.942

Waymo 0.786 0.568 0.693

Kitti 25%
Kitti 0.869 0.781 0.883

Waymo 0.798 0.622 0.716

Carla
Kitti 0.651 0.466 0.532

Waymo 0.614 0.509 0.552
Carla 0.710 0.842 0.793

VKitti
Kitti 0.797 0.622 0.656

Waymo 0.838 0.663 0.769
VKitti 0.966 0.935 0.983

Table 7: Training result on one database with transfer learning

Model Train Test P R mAP

Yolov5S

Kitti 100%+
Carla

Kitti 0.886 0.828 0.912
Waymo 0.767 0.581 0.670
Carla 0.660 0.734 0.728

Kitti 50%+
Carla

Kitti 0.760 0.810 0.806
Waymo 0.784 0.578 0.674
Carla 0.685 0.749 0.742

Kitti 25%+
Carla

Kitti 0.767 0.764 0.775
Waymo 0.794 0.570 0.672
Carla 0.717 0.730 0.742

Yolov5L

Kitti 100%+
Carla

Kitti 0.950 0.911 0.969
Waymo 0.800 0.579 0.676
Carla 0.745 0.760 0.829

Kitti 50%+
Carla

Kitti 0.802 0.871 0.889
Waymo 0.792 0.600 0.694
Carla 0.610 0.901 0.800

Kitti 25%+
Carla

Kitti 0.817 0.808 0.846
Waymo 0.799 0.570 0.673
Carla 0.702 0.731 0.776

Table 8: Training result on CARLA and KITTI with transfer learning



Transfer learning and synthetic data in deep learning 11

Model Train Test P R mAP

Yolov5S

Kitti 100%+
Vkitti

Kitti 0.896 0.813 0.904
Waymo 0.783 0.568 0.664
Vkitti 0.945 0.910 0.969

Kitti 50%+
Vkitti

Kitti 0.864 0.772 0.868
Waymo 0.782 0.567 0.663
Vkitti 0.955 0.906 0.970

Kitti 25%+
Vkitti

Kitti 0.815 0.732 0.816
Waymo 0.804 0.570 0.675
Vkitti 0.945 0.909 0.970

Yolov5L

Kitti 100%+
Vkitti

Kitti 0.949 0.915 0.967
Waymo 0.770 0.597 0.683
Vkitti 0.973 0.929 0.983

Kitti 50%+
Vkitti

Kitti 0.938 0.882 0.955
Waymo 0.779 0.597 0.682
Vkitti 0.971 0.925 0.982

Kitti 25%+
Vkitti

Kitti 0.895 0.878 0.931
Waymo 0.781 0.586 0.679
Vkitti 0.979 0.930 0.984

Table 9: Training result on VKitti and KITTI with transfer learning

6 DISCUSSION AND CONCLUSIONS

The experiments conducted have made it possible to quantify the impact of
various techniques on the results of a training process. First, multiple trainings
from scratch have been performed with different databases (table 3) and mixing
real and synthetic data (tables 4 and 5). Subsequently, these trainings have been
repeated but applying the transfer learning technique, that is, starting from
pre-trained weights in COCO (tables 7, 8 and 9). It has been observed how
applying a transfer learning technique helps to avoid overfitting problems that
appear in training from scratch, obtaining even higher performances. This is
why in DL network training processes it is recommended to use this technique
whenever possible due to the benefits it provides. On the other hand, the results
have also allowed us to verify which approach to obtain synthetic data between
CARLA and VKitti provides the most improvement. Training with only one of
these two datasets does not provide any improvement over real data (KITTI
or Waymo), so it is advisable to mix them with real-world data to improve
the results. In the case of performing this combination, it is obtained that in
the case of training from scratch, both data sources provide better results than
using only the real database. When using pre-trained weights, CARLA does not
achieve better results than training with a single real database, but VKitti does
achieve an improvement, especially as the percentage of KITTI is reduced. The
use of transfer learning for DL training is recommended as long as the original
database has similarities to those to be used for the particular case. For example,
COCO [16] can be used for general camera detection. The proxy worlds approach
used by VKitti [4] provides a more noticeable improvement than using data from



12 Miguel Antunes

a simulator such as CARLA. However, obtaining data by the former method is
more expensive and more limited than using CARLA, which is able of generating
unlimited labeled data in a simple way.

References

1. A. Geiger, P. Lenz, and R. Urtasun, “Are we sready for autonomous driving?
the kitti vision benchmark suite,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

2. P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Tim-
ofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen,
and D. Anguelov, “Scalability in perception for autonomous driving: Waymo open
dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

3. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot
Learning, 2017, pp. 1–16.

4. A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-
object tracking analysis,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2016, pp. 4340–4349.

5. Y. Cabon, N. Murray, and M. Humenberger, “Virtual kitti 2,” 2020.
6. “Unity.” [Online]. Available: https://unity.com/
7. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for

deep learning,” Journal of Big Data, vol. 6, no. 1, Jul 2019. [Online]. Available:
https://doi.org/10.1186/s40537-019-0197-0

8. X. Weng, Y. Man, D. Cheng, J. Park, M. O’toole, and K. Kitani, “All-in-one drive:
A large-scale comprehensive perception dataset with high-density long-range point
clouds,” 12 2020.

9. J. de la Peña, L. M. Bergasa, M. Antunes, F. Arango, C. Gómez-Huélamo, and
E. López-Guillén, “Ad perdevkit: An autonomous driving perception development
kit using CARLA simulator and ROS - Accepted ITSC 2022.”

10. R. Girshick, “Fast r-cnn,” 2015.
11. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” 2016.
12. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018.
13. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and

accuracy of object detection,” 2020.
14. G. Jocher, A. Stoken, A. Chaurasia, J. Borovec, NanoCode012, TaoXie,

Y. Kwon, K. Michael, L. Changyu, J. Fang, A. V, Laughing, tkianai, yxNONG,
P. Skalski, A. Hogan, J. Nadar, imyhxy, L. Mammana, AlexWang1900, C. Fati,
D. Montes, J. Hajek, L. Diaconu, M. T. Minh, Marc, albinxavi, fatih,
oleg, and wanghaoyang0106. (2021) ultralytics/yolov5: v6.0 - yolov5 models,
roboflow integration, tensorflow export, opencv dnn support. [Online]. Available:
https://doi.org/10.5281/zenodo.5563715

15. M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detec-
tion,” 2020.

16. T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in
context,” 2015.


