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Abstract. Detection and Multi-Object Tracking (DAMOT) systems
have a critical role to play in scene understanding in the context of au-
tonomous driving. Modern Autonomous Driving Stacks (ADS) require
a software processing unit or module that allows them to understand
the data in the environment and convert it into vital information for
further decision making. In this context, this work develops a DAMOT
module based on Machine Learning techniques, such as DBSCAN or
BEV-SORT, that receives information from LiDAR and RADAR sen-
sors in CARLA Simulator. This module uses containerisation techniques
with Docker and standard robotics communications with ROS. The per-
formance of the method is evaluated in terms of detection in the AD
PerDevKit dataset, developed by the authors.

Keywords: LiDAR, RADAR, object detection, multi-object tracking,
CARLA Simulator.

1 Introduction

In recent years, academia and industry have both shown great interest in the
development of autonomous vehicles (AV) and self-driving cars as they are seen
as the main characters of a booming sector that marks the next transportation
revolution. An AV is an intelligent transportation system capable of performing
the functions related to the five domains of an AV architecture: perception,
localisation, mapping-planning, decision making and control.

Faced with this situation, two types of architectures for solving this problem
appear: modular [1] or end-to-end [2]. Moreover, the diversity of these archi-
tectures lies not only in the way they deal with the available data, but also in
the sources of information they bring into play, the sensors. Typically, LiDAR,
RADAR and monocular or stereo cameras are used to capture the instantaneous
state of the environment surrounding the ego-vehicle and are accompanied by
others such as odometry, Inertial measurement units (IMU), Differential Global
Navigation Satellite System (D-GNSS) and High-definition Maps (HD Maps),
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Fig.1: Performance of the DAMOT method in a Traffic Jam use case in
AD PerDevKit dataset. Tracked objects are shown as green Bounding Boxes.

which provide information on the state of the ego-vehicle and its control vari-
ables, as well as the environment itself [3].

This work is framed in the domain of perception in the context of a modular
architecture, a layer in charge of understanding the scene and extracting infor-
mation for decision making in the respective domains. In this work, we propose
a work framed in the Object Detection and Multi-Object Tracking (DAMOT)
tasks using Machine Learning techniques, achieving satisfactory results in chal-
lenging and complex test scenarios in CARLA Simulator [4].

Regarding the sensing of the environment, this work chooses to merge the
information coming from a LiDAR and a RADAR synthetically generated in
CARLA. Both sensors provide point clouds that describe the space in a three-
dimensional way and while LiDAR is much more common in recent literature
[5], it shows some shortcomings that RADAR can overcome, such as:

— It can take advantage of the Doppler effect to infer velocity while LiDAR is
unable to natively infer it.

— It can excel in long range detections, as it typically performs better given
the smaller gradient of information with respect to distance.

— Native velocity inference can also contribute to the Object Tracking task,
since more variables are contributed to the model than are normally inferred
or predicted by Bayesian models.

— It can also contribute to the categorical identification of an object by means
of the Radar Cross Section (RCS) together with the Reflection Intensity of
LiDAR. As it is not a feature included in CARLA, this aspect is postponed
to future studies.

Therefore, this method will be implemented and validated over the novel
AD PerDevKit dataset [6], in which the performance of the Object Detection
method will be measured. This tool includes complex test scenarios recorded in
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CARLA Simulator under diverse weather and environment conditions. Finally,
the main contributions of this paper are:

— The development and integration of a DAMOT pipeline based on LiDAR
and RADAR into a state-of-the-art autonomous driving architecture [3].

— An evaluation of an Object Detection system in our challenging and open-
source AD PerDevKit dataset.

2 Related works

The following section will discuss different approaches taken by the community
in the field of LiDAR and RADAR based Object Detection and Multi-Object
Tracking, paying special attention to the methods that have set the guidelines
in these fields. Typically these two tasks, which are crucial in the field of au-
tonomous vehicle perception, have been tackled with only one of the two sensors
used in this work or by fusion of one with cameras, with LIDAR and RADAR
fusion being the least explored in recent literature [7] as can be seen in Fig. 2.

In the field of object detection using LiDAR, [8] set a guideline on which
a great diversity of works have been developed. Point-based object detection
methods take as input the raw information from point clouds, so the key con-
cept for object detection is the iterative clustering and sampling of groups of
points through the concept of voxelisation. The model took as input segmented
3D point clouds on which object classification tasks were performed by partial
cloud segmentation. Empowered by a neural network working at point-wise level,
transformations were performed using convolutional and max pooling layers.

In [9], it was acknowledged that 3D convolutions were a bottleneck to achiev-
ing a robust 3D detection in real time. Therefore, it is proposed a model that uses
2D convolutions with an encoder that learns scene features in pillars (vertical
columns). The pillars allow the 3D scene to be converted into a 2D pseudo-
image. Moreover, the model does not need hand-tuning to adapt to new sensor
conditions (agnosticism), and the authors claim that it is even valid for use with
radar point clouds.

With respect to the field of radar object detection, a number of methods to
achieve this task are proposed in [10]. Five methods are developed and reviewed,
covering a wide spectrum of possibilities with which to tackle this task, from
traditional clustering to bird’s eye view imaging (BEV):

— DBSCAN [11] clustering for detection and Long Short-term Memory (LSTM)
[12] for classification.

PointNet++ [8] for 3D semantic segmentation and detection with DBSCAN
clustering [11].

Grid-mapping and YOLO-v3 [13] for BEV-image detection.

— Object detection based on PointPillars [9].

Combined pipeline of PointNet++ [8], DBSCAN [11] and LSTM [12].
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In [14], the concept of tracking within the context of LIDAR and RADAR fu-
sion for detection in urban environments was introduced. Applying an Extended
Kalman Filter (EKF) [15] to cope with non-linearities coming from RADAR
measurements, tracking was made possible.

With respect to similar works in tracking terms, in [16], a pipeline is pre-
sented that fuses LIDAR and camera information for object detection and track-
ing tasks, in addition to a forward prediction of the movement of vehicles sur-
rounding the ego. In this case, BEV-SORT [17] is also used for tracking and
the concepts of containerization and standard communications with ROS and
Docker are exploited.

m Radar-Camera

= Radar-Camera-Lidar
Camera-Lidar

m Lidar-Radar

Fig. 2: Status of Multi-Sensor Fusion in the context of Autonomous Driving.
Adapted from [7].

3 Methodology

In this work we take as a starting point the premise that the problem of percep-
tion in the field of autonomous driving can be solved by the coherent combination
of a set of traditional processing techniques, which constitute a modular archi-
tecture. This modularisation enables a large problem to be solved by breaking it
down into smaller, simpler tasks. Although these systems are weaker and more
prone to error propagation between modules, a policy of strict constraints and
filtering makes them viable [18]. This type of systems have a greater capacity for
explainability and determinism in each of the modules, as opposed to end-to-end
systems.

The present architecture is divided into four modules: two Object Detection
modules, one each for LIDAR and RADAR, a sensor fusion module and a final
Object Tracking module, which are shown in Fig. 3. In addition, our system
pipeline exploits the concepts of lightweight Linux containers using Docker [19]
to provide the system with isolation, flexibility and portability, and standard
communication in robotics using the Robot Operating System (ROS) [20]. A
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Fig.3: LIDAR-RADAR based DAMOT method. From left to right all tasks
involved in the method can be seen. With the information from the RADAR,
LiDAR and HD Maps, the detection module is entered. In this module, the stages
of plane filtering, clustering and flitting of tracker candidates are concatenated.
Sensory fusion is then carried out, which provides the input for the tracking stage.
Finally, the tracking is carried out through successive stages of data association
and cycles of the BEV Kalman Filter, which are accompanied by the Birth-Dead
memory module for the management of the tracked objects. These objects make
up the output of the system.

use case of this method in action is the Traffic Jam on a highway which can be
seen in Fig. 1.

3.1 LiDAR and RADAR Object Detection

The first stage of this modular pipeline is the Object Detection over the inputs
of the system: the point clouds provided by a LiDAR mounted on the top and
a RADAR mounted on the front of the ego-vehicle in CARLA Simulator. On
the one hand, the LiDAR point cloud consists of detections in P, = z,y, 2,1
format: Cartesian coordinates and intensity of the reflection. On the other hand,
the RADAR point cloud consists of detections in P = z,y, 2, 7,0, ¢, v format:
Cartesian and spherical spatial coordinates, as well as Doppler velocity. Before
proceeding to the object detection, it is convenient to filter the input data,
as it will facilitate this task. In addition, it should be noted that the spatial
distribution of point clouds is different, so each point cloud will require a specific
set of filters.

First, the processing of the LiDAR point cloud will be discussed. Taking
into account that this sensor has been configured to imitate a Velodyne HDL-
64, it can be stated that the light beams are emitted with a vertical FoV of
[-25°, 29]. This configuration makes it possible to take advantage of the height
position of the sensor and to avoid occlusions caused by objects very close to
the ego-vehicle. A large number of these light beams hit the ground directly,
resulting in high density cluster candidates. To avoid the formation of these,
the road plane is segmented using a RANSAC algorithm [21]. It is a robust
model fitting algorithm that performs the plane segmentation task in a iterative
repeated sequence, generating a random hypothesis and verification. It proposes
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a random plane for n iterations and it maximizes the number of inliers fitting
that plane according to a given threshold and is robust to a strong presence
of outliers in the data. In addition, since it was observed that the density of
incident points on the objects in the scene decreases considerably with distance,
it was decided to divide the cloud into two parts at a distance of 25 m, giving
rise to the concepts of close field and far field. This is done in order to be able
to apply an adaptive clustering with distance.

Once the point cloud has been filtered and divided according to distance,
a DBSCAN-based clustering process is applied for each of the defined zones.
This process allows grouping the points belonging to a vehicle for a correct
identification or detection. DBSCAN [22] is a clustering model that aims to
find regions in a multi-dimensional space whose density is higher than certain
user-defined parameters and which are separated by zones of lower density. The
concept behind cluster formation is based on two parameters: minPts and €. A
point can be considered:

— Core point: if within a distance defined by a circle or sphere of radius €
there is a number of neighbours greater than minPts.

— Border point: if it is in the neighbourhood of a core point, but does not
have a number of neighbours greater than minPts.

— Noise point: if the point do not meet any of the above cases.

Therefore, the resulting clusters will be formed by the core and border points
directly reachable in density. This algorithm allows not having a priori knowledge
of the number of vehicles (or clusters) present in the scene. The appearance
of objects change with range, and after some distance, very few data points
per objects are available to detect an object. This poses some challenges for
detection, but this approach allows defining a series of different parameters for
the close field and for the far field, in order to adapt to the far field cluster
appearance.

On the other hand, RADAR is configured with a horizontal FoV of 160° and
a vertical FoV of +8° emulating commercial configurations currently on the
market or available in datasets [23]. The spatial distribution of the points in this
cloud corresponds to a sparse point cloud, whose rays have no tendency to hit the
ground. Given the scarcity of points and the importance of obtaining the native
Doppler velocity of the detected objects, it is decided not to apply additional
filters to those provided by the topological information of the map, as is done in
the case of LiDAR. Consequently, another instance of the DBSCAN algorithm
is applied to find the clusters belonging to the vehicles in the RADAR field of
view. Given the clusters that are candidates for detection a positional filtering is
made taking into account the information from HD Maps, remaining only those
within the conduct zones. Lastly, a further geometrical filtering step is carried
out. Those clusters with much larger dimensions, either in height, width or length
or the product of the latter two, are rejected. All the remaining candidates pass
to the fusion stage in Bounding Box (BB) format, and are defined by the vector
B = z,y,z,l,w,h,0,v, where [z,y, z] are the position in space of its centroid,
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[l,w, h] are its dimensions for each axis, 6 is the yaw angle and v is Doppler
velocity obtained with RADAR.

3.2 Sensor Fusion

The next stage of the pipeline is the sensor fusion of the object candidates clus-
tered in the previous stage. How to fuse objects is an open question in academia
and in this work we have chosen to consider as valid those objects detected by
both sensors, which leads to redundancy, as well as those that are detected by
one of the sensors and are out of the field of view of the other. For the first case,
in which both sensors provide a detection, a spatial association mechanism us-
ing IoU-3D is introduced, which combines the spatial information of the clusters
and assigns the velocity obtained by the RADAR to this candidate. Therefore,
it is considered as a detected object and proposed for the tracking stage. It is
only consistent to opt for a fusion based on full redundancy of detections when
the FoVs of the sensors involved in the fusion are identical, as this implies no
detection of occluded objects. Therefore, for the candidates in the second case,
the occluded angles for both sensors are examined and objects that are proposed
by one sensor, but are out of range of the other, are taken as detected objects.
The approach enables the height advantage of LiDAR at close distances to be
exploited, although these objects will not have a native velocity inference. An-
other advantage is the greater ease of clustering at long distances for RADAR.
This combination of criteria results in an exploitation of the native strengths of
both sensors.

3.3 Multi-Object Tracking

The third and last stage of the pipeline is a Multi-Object Tracking (MOT)
module based on SORT that performs 3D Tracking from a Bird’s Eye View
(BEV). Adding the height dimension in solving this problem does not provide a
clear improvement in the results and increases the computational cost and the
completeness of the module. Since representing the space surrounding the ego-
vehicle on a two-dimensional XY axis eliminates the main problem of traditional
2D tracking, occlusion, such an assumption has no negative effect on the result.
As the Tracking module is fed by the filtered and refined detections, the concept
of Tracking-by-Detection is reached.

BEV-SORT addresses MOT problem as a pipeline resulting from the combi-
nation of traditional techniques, mainly Kalman Filter (KF) [24] and Hungarian
Algorithm (HA) [25], that are used for state estimation and data association,
respectively. The algorithm makes use of a motion model to propagate the iden-
tity of a detected object from one timestamp to the next. The identity of each
detected object is stored in a vector of 8 variables:

Btrk - [x,y,l,w,@,x/,y’,ﬂl]' (]‘)

As a result of the detection and fusion modules, these vectors are fed with 7
of the 8 variables, with only 6’ being inferred. When a detection is associated to
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Table 1: Evaluation in the AD PerDevKit dataset for all scenarios tackling Ob-
ject Detection with the fusion between LiDAR and RADAR. For evaluation
difficulties: E stands for Easy, M for Medium and H for Hard, depending on the
evaulation range.

F1 score
Scene Town Weather Environment E (25m) M (50m) H (75m)

1 03 Day Urban 46.84 14.68 10.51
2 03 Night Urban 43.67 21.09 17.91
3 05 Day Urban 26.40 14.69 11.99
4 05 Day Highway 49.05 29.03 21.42
5 06 Day Highway 57.45 29.40 20.07
6 06 Day Highway 31.47 19.43 14.60
7 06 Rainy Highway 23.23 14.86 10.97
8 07 Day Rural 19.86 11.08 8.99
9 07 Rainy Rural 54.70 42.86 31.66
10 10HD  Day Urban 29.26 14.22 10.73
11 10HD Night Urban 21.97 9.70 7.28

TOTAL 36.43 20.67 16.31

an object in the scene, a By, is produced and used to update the state of the
object and predict its behaviour at the next timestamp via KF. If there is no
detection associated with the object, it is predicted without correction or update
using the motion model. To associate the detections to the objects stored by the
algorithm, a cost matrix is proposed that computes the IoU of all detections
with the objects. This provides the necessary input to apply the HA and see
which new detection corresponds to the saved object, an assignment problem.

The identities of the objects and their motion models are created as they
appear in the scene and are destroyed when they no longer appear in the de-
tections. In addition, the algorithm has two user-customisable parameters that
allow defining the behaviour in case of object creation and destruction. As a
mechanism to avoid false positives, the user can decide the number of times an
object is detected to be considered by the algorithm. In other words, if the same
target appears n times in the detections, its identity and its motion model are
created so that it counts in the processing. The second parameter is the number
of times an object is not detected so that its identity is destroyed and it is not
counted.

To conclude the method, it is indicated that the output provided by the
approach is a list of tracked and identified objects that will serve as input to
the other modules of a modular architecture for the successful completion of
autonomous navigation.
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4 Validation and Experimental Results

In order to provide qualitative and quantitative metrics that reflect the strengths
and weaknesses of the proposed approach, a quantitative validation method is
chosen.

4.1 Validation method

The metrics of the method’s performance are obtained by using our AD PerDe-
vKit, a dataset that allows scoring the goodness of Object Detection in use cases
of interest and complex scenarios designed in CARLA Simulator. This dataset, in
its first version, consists of a series of complex scenarios and use cases recorded
on the different CARLA maps, representing conventional autonomous driving
scenes in urban, rural and highway environments.

A suite of sensors integrated in the tool is composed of a 360° LiDAR, a 90°
frontal RADAR, a frontal monocular camera, and IMU and GPS sensors. Given
the nature of our proposal, it is decided to carry out an evaluation on the 11
available scenarios in a 90° frontal field of view to measure the performance of
Object Detection. Goodness of the approach is validated with F-beta score. For
the case in point, § = 1.

— F-beta score (Fg) [Eq. 2]: Measure of a test accuracy calculated from the
precision and the recall: True Positives (TP), False Negative (FP) and False
Negative (FN) detections.

(1+p8%)-TP

Fo={+p 1P+ FN 1 FP )

To carry out the validation, an efficient evaluator is developed which takes
as input the groundtruth provided by the dataset and the detections made by
the presented method and calculates the offline metrics.

4.2 Experimental results

A series of experiments is decided to evaluate the performance of the method,
comparing the fusion performance against simple Object Detection pipelines
with LiDAR or RADAR only. Furthermore, thanks to the diversity of AD PerDe-
vKit scenarios, it is possible to compare the performance against different types
of driving environments and weather conditions. The evaluation is performed
in three difficulties, differentiated by the range of distance to be detected: Easy
(25m), Medium (50m) and Hard (75m). The best scores are marked in blue in
Tables 1 and 2.

Table I shows the performance of the algorithm for each and every AD PerDe-
vKit scenario. On Easy difficulty, a maximum score of 57.45 is obtained for
Scenario 5 (day and highway). For Medium and Hard, the maximum score is
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Fig.4: Evolution of F1 score with respect to the distance evaluated over the
different environments (left) and climate (right) scenarios offered by AD PerDe-
vKit.

obtained in Scenario 9 (rainy and rural environment), with 42.86 and 31.66, re-
spectively. Weighing all scenarios, a score of 36.43, 20.67 and 16.31 is obtained
for each difficulty. Regarding the driving environments, Fig. 4 (left) shows that
the best environment in which the method performs is Highway for Easy and
Rural for Medium and Hard. In the case of weather conditions, the method per-
forms best in rainy scenarios, as shown in Fig. 4 (right), presumably thanks to
RADAR information.

Table IT shows an ablation between the Object Detection performance and
the full fused module and the sensors alone. It can be seen that the system
improves significantly (11.21 points) by keeping the same detection method but
including fusion and tracking over the sensed detections.

Table 2: Complete evaluation in the AD PerDevKit dataset.

F1 score (%)

Mode
Easy (25m) Medium (50m) Hard (75m)
Only LiDAR 25.22 16.14 12.13
Only RADAR 16.23 7.74 5.96
LiDAR+RADAR 36.43 20.47 16.31

5 Conclusions and Future Works

This paper presents the development, implementation and validation of an Ob-
ject Detection and Multi-Object Tracking pipeline module using LiDAR, and
RADAR in CARLA Simulator. Using state-of-the-art software tools, such as
ROS and Docker, and Machine Learning techniques such as DBSCAN and BEV-
SORT. In addition, a quantitative evaluation is performed over AD PerDevKit
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dataset, which demonstrates that sensor fusion is beneficial over the inclusion of
a single sensor, while maintaining the same detection methods. This work opens
the way for future works on carrying out an ablation on Tracking and how to
improve this fusion with state-of-the-art methods, or with different configura-
tions or arrangements of the same sensors at different mounting positions.
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