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a b s t r a c t

In this paper we present a new real-time hierarchical (topological/metric) Visual SLAM system focusing
on the localization of a vehicle in large-scale outdoor urban environments. It is exclusively based on
the visual information provided by a cheap wide-angle stereo camera. Our approach divides the whole
map into local sub-maps identified by the so-called fingerprints (vehicle poses). At the sub-map level
(low level SLAM), 3D sequential mapping of natural landmarks and the robot location/orientation are
obtained using a top-down Bayesian method to model the dynamic behavior. A higher topological level
(high level SLAM) based on fingerprints has been added to reduce the global accumulated drift, keeping
real-time constraints. Using this hierarchical strategy, we keep the local consistency of the metric sub-
maps, by mean of the EKF, and global consistency by using the topological map and the MultiLevel
Relaxation (MLR) algorithm. Some experimental results for different large-scale outdoor environments
are presented, showing an almost constant processing time.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Real-time Simultaneous Localization and Mapping (SLAM) is
a key component in robotics and it has seen significant progress
in the last decade [1–3]. The interest in camera-based SLAM
has grown tremendously in recent years. Cameras have become
much more inexpensive than lasers, and also provide texture
rich information about scene elements at practically any distance
from the camera. Currently, the main goal in SLAM research is
to apply consistent, robust and efficient methods for large-scale
environments in real-time.
Traditionally, vision researchers have concentrated on recon-

struction problems focusing on the so-called Structure From Mo-
tion (SFM) techniques. Thismethods estimate the ego-motion from
frame to frame feature matching and perform global estimation
optimization by means of the method known as bundle adjust-
ment [4]. Because of its implementation is carried out essentially
offline [5], these methods are not well suited for consistent local-
ization over arbitrarily long sequences in real time. Somemethods
make use of bundle adjustment techniques but only to a reduced
set of keyframes of the sequence. Thus, vehicle poses associated to

I This work was supported in part by the Spanish Ministry of Education and
Science (MEC) under grant TRA2005-08529-C02 (MOVICON Project) and grant PSE-
370100-2007-2 (CABINTEC Project) as well as by the Community of Madrid under
grant CM: S-0505/DPI/000176 (RoboCity2030 Project).
∗ Corresponding author. Tel.: +34 666244074; fax: +34 918856591.
E-mail addresses: dsg68818@telefonica.net, dsg68818@gmail.com

(D. Schleicher), bergasa@depeca.uah.es (L.M. Bergasa), mocana@depeca.uah.es
(M. Ocaña), barea@depeca.uah.es (R. Barea), elena@depeca.uah.es (E. López).

0921-8890/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2010.03.016
these keyframes are calculated and locally optimized. In [6] a real
time local bundle adjustment method is presented, which shows
accurate vehicle poses and medium size environment reconstruc-
tion in real time. Thismethod, however, only estimate a very sparse
set of poses to be able to process a large amount of landmarks. Also,
the fact that amonocular sensor is used, implies a prior knowledge
of the initial environment.
One of the most popular methods to solve the SLAM problem

is the Extended Kalman Filter (EKF). As it is well known, the EKF
implementation is limited by the complexity of the covariance
matrix calculation, which increases quadratically in large-scale
maps as a function of the landmarks introduced into the filter
O(n2). To deal with that problem, in the last years the so-called
FastSLAM algorithm was presented [7]. It recursively estimates
the full posterior distribution over the robot’s pose and landmark
locations by using a particle filter to model multiple path
hypotheses. It has been widely applied [8,9], however as long as
the environment becomes larger, the processing time needed to
calculate the different hypotheses increases dramatically.
If we focus on the EKF based algorithms, two main different

approaches are taken to face the complexity problem. On one hand,
several methods try to modify the intrinsic principles of the EKF
regarding the way of the covariance matrix is computed [10,11].
Most of them achieve to reduce the problem to a linear complexity
order O(n). Instead of intrinsically modifying the filter, some
other methods have focused on facing the problem of global
localization and mapping by dividing the map into smaller ones
using a metric [12–14] or topological approach [15,16]. They
both use detailed local maps, but the sub-maps employed in the
metric approach do not maintain a topological structure of an
environment as in the hybrid or topological/metric approach.
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Our work relies on the topological/metric philosophy using
local maps in order to represent the world and locate within. Our
approach basically generates a series of local sub-maps taken on an
equally-spaced basis (low level SLAM). Each of them is composed
of a number of visual landmarks precisely taken, and is handled
by using a standard EKF. A topological map along with local metric
sub-maps is built (high level SLAM). The topologicalmap is a graph-
like map consisting of vertices and edges. Each vertex represents
a topological place, a robot pose that we call fingerprint, and
includes a localmetric sub-map. If a robot is traveling between two
vertices, an edge is inserted to connect these two vertices, which
represents a link between these two poses. Meanwhile, the edges
store transformation matrices and uncertainties to describe the
relationship between connected vertices. Using this hierarchical
strategy of two levels, on one hand we keep the local consistency
of the sub-maps by mean of the EKF and, on the other hand,
we keep global consistency by using the topological level and
the MultiLevel Relaxation (MLR) method of Frese et al. [17]. The
MLR algorithm determines the maximum likelihood estimate of
all vehicle vertices along the whole path. Vertex corrections are
transmitted to the landmarks of their corresponding sub-maps.
Our final goal is the autonomous outdoor navigation of a

vehicle in large-scale environments where a GPS signal does not
exist or is not reliable (tunnels, urban areas with tall buildings,
mountainous forested environments, etc.). Our research objective
is to develop a robust localization system, based on SLAM using
only a cheap stereo camera, able to complement a standard GPS
sensor, for vehicle navigation. Then, our work is focused on real-
time localization as the main output of interest. A map is certainly
built, but it is a sparse map of landmarks optimized toward
enabling localization. Our hierarchical proposal of two levels
(topologic and metric) works well in large-scale environments,
producing topological correct and geometrical accurate sub-maps
at minimal computational cost. On the other hand, the topological
level facilitates the path planning strategies, fusion with the GPS
information and the future generalization of the system to amulti-
vehicle SLAM.

2. Related work

In [3], Davison presented an impressive work of real-time 3D
visual SLAM carried out by using a hand-held single camera. It
was the main basis of our research. In his recent paper [18]
Davison presented a revision of his method called MonoSLAM.
MonoSLAM is an EKF SLAM system, and cannot be used to map
large environments. To solve the covariance complexity problem,
several strategies have been developed in recent years. We will
focus our study on the submapping strategies.
One possible solution to the large scale problem is the

Metric–Metric approach,which faces it dividing thewholemap into
smaller ones using a high metric level approach over the metric
sub-maps. One of the first methods that applied techniques for
map splitting was presented by Tardós et al. [13]. They intend
to map and locate a robot within by using sonar measurements.
One of their main contributions was to create local sub-maps
applying EKF within them. The independent sub-maps are joined
afterwards by using compositions. An important problem of this
method and the Hierarchical Visual SLAM one is that local maps
must be statistically independent. This impedes sharing valuable
information between local maps. A solution for this problem
has been recently published by the authors in [19] where a
Conditionally Independent Divide and Conquer SLAM is proposed.
In order to extend the MonoSLAMmethod to larger environments
a Hierarchical Visual SLAM is presented in [12]. A single camera
is used in both these systems, and thus scale unobservability is
a fundamental limitation in both. In either case, the scale must
be fixed by observing known objects to avoid drift in scale over
time. Hierarchical Visual SLAM can be used for large scalemapping
because it divides the global map in local sub-maps of limited
size, achieving almost constant time execution. One of the last
contributions is the work presented in [14]. A 6DOF stereo-in-
hand system, based on the commercial Bumblebee stereo system,
is used to capture visual landmarks, but this time they are
classified as either nearby or far. Depending on this, information
provided by the stereo pair will be either complete location or
just angular information of the landmark relative to the camera.
This methodology is an evolution of their previous monocular
version [19]. An EKF sub-map strategy is also applied here. Results
show an accurate mapping and loop closing over relatively large
environments. However, due to the lateral movement of the
camera, a continuous matching philosophy is imposed in order to
reduce time frames to detect loop closing situations. The use of
a relatively close range camera system does not make it suitable
for very large and open-spaced environments, where most of
the landmarks will be too far. Also, real-time behavior is not
completely achieved.
Another alternative to solve the large scale problem is to use a

high topological level approach over the metric sub-maps, which
leads to the Topological-Metric methods. In [20] they present
the Decoupled Stochastic Mapping (DSM), where a global map is
divided into smaller cells containing parts of the global one. All
landmarks and vehicle poses are referred to the global frame in
any of the cells. Crossing from one cell to another implies an
information transfer solved using uncertainty inflation methods,
which are questionable. Also, the closing loop optimization issue
is not addressed on this method. Hierarchical Local Maps (HLM)
method is presented in [21]. It consists in a hierarchical set of
sub-maps locally referenced in this case. Adding a new sub-
map implies storing the local vehicle pose and covariance at that
moment. All the estimates are stored in a coupling tree, where
relations between any of the sub-maps can be calculated using
coupling summation formulas. One of the main disadvantages is
the fact that coupling estimates of all sub-maps remain static
throughout. This implies that no uncertainty reduction can be
performed when closing some loops. The Constrained Relative
Submap Filter (CRSF) presented in [22] is essentially equal to
HLM, but introduces improvements on theway coupling estimates
are stored, which allow, in case that the vehicle returns back to
the previous sub-map, reinitializing the vehicle estimation using
geometric constraints. This permits reducing the uncertainty of
the subsequent sub-map as the previous one also converges.
However, due to the monotonic linkage between sub-maps, no
global optimization is performed in case of loop closing situations.
Network Coupled Feature Maps (NCFM) presented in [23] is based
on CRSF as well. However NCFM does not restrict coupling
estimates to monotonic linkages, allowing further optimization
in loop closing situations. One advantage of the method is that
it allows optimizing different sub-maps couplings when vehicle
covers boundary regions between these sub-maps. This approach
implies to have a relatively dense grid of sub-maps strongly
overlapped to exploit this advantage, and to be able to reduce
global uncertainty. It also requires a robust data association
method to relate visual landmarks between adjacent sub-maps
in the case of visual SLAM systems. The approach of Eade and
Drummond [24] is based on the NCFM method. It consists in a set
of interconnected nodes containing Kalman filter map estimates.
Map states and uncertainties are computed in their local frames.
To reduce linearization errors, measurements are expressed using
the inverse depth representation. Edges store the constraints
between nodes defined by a similarity transform, which due to the
monocular implementation, includes the scale information. The
active node is selected based on the visible available landmarks
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and the estimation of the measurement model’s linearity. The
inverse depth implementation shows to improve measurement
linearization with limited displacements compared to landmarks
distances. However this is true, due to the camera’s movement
configuration, which impliesmainly lateral parallel displacements,
keeping landmarks depths almost constant. This assumption is
also made in [14]. On the other hand, the algorithm is well suited
for indoor environments with strong relations between different
regions (i.e. nodes), but is not expected to improve significantly
the estimation in large outdoor environments. In [25] a two level
hierarchical approach to the SLAM problem is presented. It defines
a local level where the robot is located relative to a local reference
frame. Then, a global level maintains a topological structure of the
environment, where nodes represent the local reference frames of
the local level. To implement it, laser scans are used to detectwalls,
corners, etc., whichwill be identified as 2D features. Because of that
implementation, to detect loop closings a relocation algorithm,
based on the structure of the mapped environment is used. This
method, however is prone to fail in the case of highly symmetric
environments, which is typical in urban scenarios. It has been
tested in medium size environments up to 350 m long and at low
speed (1.62 km/h average speed). The map optimization time can
reach up to 680 ms with a reduced number of features. As no
parallelization between global and local levels is carried out, it
is expected that real time implementation is not feasible. On the
other hand, the way that shared features between local maps are
managedmakes the systemmore suitable to highly interconnected
environments, like indoors corridors, rooms, etc.
In [26] they present an almost real-time system based on a

stereo camera pointed to the floor and an inertial unit. The main
problem comes from the reduced field of view of the system. It
implies a low reliability of loop closing situations where a highly
repetitive texture is captured.
A third alternative to face the large scale SLAM problem is

to use only topological maps without sub-maps associated to
their vertex. These maps lack the details of the environments but
they can achieve good results for certain applications. In [27] a
minimalist visual SLAM for large-scale environments is presented.
The approach is based on a graphical representation of robot
poses and links between the poses based on odometry and
omni-directional image similarity. A MLR algorithm is used to
generate a globally consistent map. For the future they plan to
include a thorough run-time evaluation, to substitute the omni-
directional camera with a standard one and to incorporate vision-
based odometry. Another approach is presented in [28], where a
topological map capturing and storing images frame by frame and
comparing them with previous ones is built. The system relies on
SIFT descriptors efficient matching and storing scheme. In spite of
its efficiency, it ends on a computational cost exceedancewhen too
many images have been captured. In [29] they use SIFT descriptors
as well to build an appearance based topological map. As it is
only topological, no ego-motion information is obtained from the
metric point of view. The main contribution is the way that large
amount of keyframes are managed to distinguish whether the
vehicle visits new places or revisits old ones (i.e. closing a loop).
The probabilistic point of view for managing keyframes matching
is based on the probability that two different image views come
from the same place. This estimation depends also on individual
properties of the keyframe, such as the pattern repetitiveness of
the image, i.e. how well correlated the SIFT descriptors are within
the image. This is quite interesting in cases where the field of
view is usually narrow (the camera is pointing laterally to the
vehicle’s displacement), and so image texture richness tends to be
low (walls, trees, etc.). We point our camera to the front of the
movement, using also wide angle lenses, so we do not usually face
that problem.
To choose one of the threemain alternative approaches,we take
into account that, on one hand, although Metric–Metric methods
provide accurate estimations they do not keep a topological struc-
ture that helps on a global optimization in large scale environments
as well as path planning techniques for navigation purposes. Topo-
logical approaches do not provide accurate information of vehi-
cle state estimations instead. Therefore, our proposal to solve the
large-scale problem is based on the hierarchical topological-metric
approach and it resembles the NCFM algorithm, but instead of ob-
tained inter-node links among sub-maps using shared map fea-
tures, we calculate them using the vehicle’s trajectory and loop
closures. The main contributions of our method compared to more
relevant topological-metric proposals presented in this section can
be summarized in amore robust data association strategy for large
loop closing based on SIFT fingerprints and a simpler node relations
management, well suited for large outdoor urban environments.
Also, thanks to the use of stereovision, a correct scale estimation
of the map is maintained even before closing loops or revisiting
places. Ourmethod allows, aswell, a continuous global uncertainty
estimation of the vehicle at any time. All of this is shown towork in
real time on large covered paths with a negligible increase on the
processing time as new landmarks are added to the map.
This paper is organized as follows: the general structure of

the system is described in Section 3. Section 4 presents the low
level SLAM implementation and Section 5 the high level SLAM. In
Section 6 a large set of results is given to show the behavior of our
system. Section 7 contains our conclusions and future work. This
work relies on previous papers presented by the authors on two
conferences up to this time [30,31].

3. Implementation

This paper presents a real-time SLAM method for large-scale
outdoor environments based only on stereo-vision. To deal with
the covariance matrix growing problem, we divide the global map
into local sub-maps. Each of these sub-maps has its own metric
SLAMprocess, independent of the other sub-maps. Over these local
sub-maps we define a higher topologic SLAM level that relates
them keeping the global map consistency.
The system is based on a stereowide-angle cameramounted on

a mobile vehicle. For each local sub-map, several visual landmarks
are sequentially captured, using the Shi and Tomasi operator
(see [30]), and introduced on an EKF filter in order to model the
probabilistic behavior of the system. Ameasurementmodel is used
for landmark perception and a motion model is implemented for
the dynamic behavior of the vehicle, as shown in Fig. 1 left. The
use of a stereo camera to identify and track features associated to
the landmarks allows their direct position calculation. It also avoids
both the needing of a priori information of the environment as well
as scale assumptions. All these tasks are carried out from themetric
point of view within the so-called ‘‘low level SLAM’’.
We present a hierarchical SLAM implementation, which adds

an additional processing level called ‘‘high level SLAM’’ to the
explained ‘‘low level SLAM’’. The whole map is divided into
independent local sub-maps identified by fingerprints, represented
as arrows within circles (see Fig. 1 right). These fingerprints
store the vehicle’s pose at the moment of the sub-map creation
and define its local reference frame. The sub-map generation
is performed periodically in space so, after a certain covered
section of the path, a new sub-map is created and a fingerprint
is associated to it. If the vehicle is traveling between two
fingerprints, an edge is inserted to connect these two vertices,
which represents a link between two poses. Meanwhile, the edges
store transformation matrices and uncertainties to describe the
relationship between connected fingerprints. The decomposition
of the global map into local sub-maps simplifies the problem of
map optimization in large-scale environments. This optimization
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Fig. 1. Left. Low level SLAM tasks carried out within each sub-map. Right. General architecture of our two hierarchical SLAM levels. Each sub-map has an associated
fingerprint.
is carried out at the global map level using an efficient method
called MLR [17]. Modifications on the fingerprints as consequence
of the optimization are directly transferred to the local sub-maps.
To optimize the loop-closing detection, when a significant

vehicle turn is detected, an additional fingerprint called SIFT
fingerprint is taken. This adds to the vehicle’s pose some visual
information to identify the place where it was taken. Matching
between the previously captured SIFT fingerprints, within an
uncertainty area, and the current one is carried out to detect
pre-visited zones. In case of positive matching, a loop-closing
is detected and the topological map is corrected by using the
MLR algorithm [17] over the whole set of fingerprints. The MLR
determines the maximum likelihood estimate of all fingerprint
poses. After that, landmarks of each sub-map are corrected as a
function of the correction applied to its associated fingerprint.

4. Method: low level SLAM

This level implements all the algorithms and tasks needed to
locate andmap the vehicle on its local sub-map. For clarity reasons
the sub-mapnotation is omitted, so it is assumedaunique sub-map
for the low level SLAM implementation.

4.1. Extended Kalman filter application

The low level state vector is defined asX = (Xv Y1 Y2 · · ·)T ,
which is composed by the vehicle state vector Xv = (Xrob qrob
vrob ωrob)

T plus all local landmarks on the sub-map Yi. Because of
the employed motion model, which will be explained later, linear
and angular speeds are added to the vehicle state vector. A vehicle
coordinate system has been set as the camera frame. On this
equation, Xrob is the 3D position of the camera relative to the local
frame, qrob =

(
q0 qx qy qz

)T is the orientation quaternion,
vrob is the linear speed and ωrob is the angular speed.
The EKF is applied in the standard form, as explained in [30].

The overall filter process is shown in Fig. 1 (left).

4.2. Motion model

To build a motion model for a camera mounted on a mobile
vehicle using only visual information, a practical solution is to
Fig. 2. Original and current feature measurement vectors.

apply the so-called impulse model. This assumes constant speed
(both linear and angular) during each time step and random speed
changes between steps in the three directions. Some restrictions
have been applied to adapt the 6DOF genericmodel to the vehicle’s
movement dynamics. According to this model, to predict the next
state of the camera the function shown in (1) is applied. The
term q[ωrob ·1t] represents the transformation of a 3 component
vector into a quaternion. Assuming that the map does not change
during the whole process, the absolute feature positions Yi should
be the same from one step to the next one. This model is subtly
effective and gives the whole system important robustness even
when visual measurements are sparse.

fv =
(
Xrob + vrob ·1t qrob × q [ωrob ·1t] vrob ωrob

)T
. (1)

4.3. Measurement model

Visual measurements are obtained from the ‘‘visible’’ feature
positions. We define each individual with a 3 component
measurement prediction vector hi as the corresponding 3D feature
position relative to the left camera frame, which is selected as
the reference. To choose the features to measure, some selection
criteria have to be defined. These criteria will be based on the
feature visibility, that is, whether its appearance is close enough
to the original one (when the feature was initialized). This is based
on the relative distance and point of view angle respect to the one
at the feature initialization phase (see Fig. 2).
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The first step is to predict the measurement vector hi (measure-
ment vector prediction). To look for the actual measurement vec-
tor zi (actual measurement vector), we have to define a search area
on the projection images. This area will be around the projection
points of the predicted measurement hi on both left and right im-
ages: UL : (uL, vL), UR : (uR, vR). To obtain the image projection co-
ordinates, first we apply the simple ‘‘pin-hole’’ model and then it is
distorted using the radial and tangential distortion models, which
are detailed in [30]. To obtain zi we need to solve the inverse ge-
ometry problem, applying the distortion models as well.
Regarding the search areas, they will be calculated based on

the uncertainty of the feature’s 3D relative position, which is
called the innovation covariance Si. As we have two different
image projections, Si needs to be transformed into the projection
covariance PUL and PUR using Eq. (2).

PUL =
∂UL
∂hi
· Si ·

(
∂UL
∂hi

)T
; PUR =

∂UR
∂hi
· Si ·

(
∂UR
∂hi

)T
. (2)

These two covariances define both elliptical search regions,
which are obtained taking a certain number of standard deviations
(usually 3) from the 3D Gaussians. Once the areas, where the
current projected feature should lie, are defined, we can look
for them. At the initialization phase, the left and right images
representing the feature patches are stored. Then, to look for a
feature patch, we perform normalized sum-of-squared-difference
correlations across thewhole search region.We scale and rotate the
landmark patch according to the current estimate of camera pose,
relative to the pose in which the patch was acquired. Therefore,
the patch appearance iswarped using the Patch Adaptationmethod
described in [30]. This helps on the search correlations phase in the
sense of extending the tracking of the patch.
In our application, the camera provides a baseline of Tint =

400 mm. We do not make any explicit differentiation between
near and far landmarks, as it is done in [14]. However, our
method implicitly does that. Far landmarks provide more useful
information when the vehicle turns and near landmarks when
the vehicle goes straight ahead. The reason is due to the
innovation covariance Si, which at the end provides the weight
of each landmark within the filter. In straight movements distant
landmarks appear to be almost static, i.e., their innovation from
frame to frame is relatively low. However, on the vehicle turns the
innovation on distant landmarks is higher, increasing theirweights
in that situation.

4.4. Feature initialization

The selected criteria to initialize new landmarks are tomaintain
always at least 5 visible features and 4 successfully measured
features, allowing the initialization of 1 feature per frame. Then,
when a new feature initialization needs to take place, making use
of the Shi and Tomasi operator, its corresponding patch will be
searched within a rectangular area randomly located on the left
camera image. To obtain the right image feature correspondence
we search over the epipolar line, restricted to a certain segment
around the estimated right projection coordinates. The detailed
implementation is described in [30].
In [12] the authors make use of the joint compatibility branch

and bound (JCBB) [19] outlier rejection technique when measuring
landmarks in a single camera 3D SLAM. In our case we use a stereo
camera, then the uncertainty in landmark position estimation is
much reduced since its creation, reducing the search over large
uncertainty areas at any time. At the time of capturing new
landmarks we use the epipolar restriction as well as an additional
restriction over the epipolar line, avoiding capturing too close
landmarks. This clearly reduces the possibility of mismatches. On
the other hand, our system is clearly designed to be mounted
onboard vehicles within urban areas. The viewpoint direction is
always pointed to the front of vehicle’s movement having a wide
field of view. Therefore it is very unlikely to see highly repetitive
textures.

5. Method: high level SLAM

Our SLAM implementation adds an additional topological level,
called high level SLAM, to the explained low level SLAM in order
to keep global map consistency with almost constant processing
time. This goal is achieved by using the MLR algorithm over the
so-called Fingerprints. Therefore, the global map is divided into
local sub-maps identified by thementioned fingerprints. There are
two different classes of fingerprints: Ordinary Fingerprints and SIFT
fingerprints.
The first ones are denoted as FP = {fpl|l ∈ 0 · · · L}. Their

purpose is to store the vehicle local pose X fplrob and local covariance
P fplrob relative to the previous fingerprint, i.e., the reference frame
of the current sub-map. To define the sub-map size we take into
account two main aspects: one is related to the non linearity
problem. It is well known that EKF linearization can be assumed
only within limited size environments. To cope with that problem
we limit the size of the sub-maps to keep the linearization
error low enough, as explained in [24]. Also, we found that
keeping a constant size in terms of the path covered we obtain
better consistency of the results on the high level global map
reconstruction. The other aspect is to keep the system under a real
time constraint. This implies a limit in the number of landmarks
processed on the low level filter. We experimentally found that
processing a map with up to 60 landmarks per sub-map we are
below the limit. Therefore, we found a suitable sub-map size as
10m of path covered, so each 10m a new ordinary fingerprint will
be taken.
The second class of fingerprints is a sub-set of the first ones,

denoted as SF = {sfq ∈ FP|q ∈ 0 · · ·Q ,Q < L}. The
additional functionality is to store the visual appearance of the
environment at the moment of being obtained. That is covered by
the definition of a set of SIFT features associated to the fingerprint,
which identifies the place at that time YF q = {Yf qm|m ∈ 0 · · ·M}.
These fingerprints are taken only under the condition of having a
significant change on the vehicle trajectory (see Fig. 3). This change
is defined in 2 steps: first the vehicle must have an orientation
change 1θ1 ≥ γmax within a time gap. Second, to obtain the most
stable point of view every time we revisit the same place, we wait
for the SIFT fingerprint capture until the orientation variation falls
below a threshold level 1θ2 ≤ γmin. The orientation angle can
be easily obtained from the quaternion. Both the limits and the
time gap have been set after testing several urban environments,
avoiding the capture of SIFT fingerprints just for random slight
vehicle movements within the road, while capturing them at
singular points within the map. Using this approach, theoretically
we could face the situation of covering a very large loop, where no
obvious turns aremade andno SIFT fingerprintswould be detected.
Our approach is based on the assumption of semi-structured
environments with singular identifiable places from the trajectory
changes point of view, and such a case would not take place in
common urban environments.
Each time a new SIFT fingerprint is taken, it is matchedwith the

previously acquired SIFT fingerprints within an uncertainty search
region. This region is obtained from the vehicle global covariance
PGrob because it keeps the global uncertainty information of the
vehicle. If the matching is positive, it means that the vehicle is
in a previously visited place and a loop closing is identified. Then,
the MLR algorithm is applied in order to determine the maximum
likelihood estimate of all fingerprint poses. Finally, fingerprint
corrections are transmitted to their associated sub-maps.
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Fig. 3. High level map management.

5.1. Local sub-maps

Each time a new fingerprint is taken, an associated sub-map is
created. The vehicle’s relative local pose X fplrob and its covariance P

fpl
rob

are stored in the fingerprint at that moment.
Due to the need of being aware about the current global

uncertainty at any time, we need to maintain PGrob updated (see
Fig. 4). We calculate it by using the coupling summation formula
(see [23]) in a recursive way. The process can be summarized as
follows: first, to obtain PGrob we need to solve (3).

PGrob =
∂X0rob
∂X0fpl

· P0fpl ·

(
∂X0rob
∂X0fpl

)T
+
∂X0rob
∂X fplrob

· P fplrob ·

(
∂X0rob
∂X fplrob

)T
. (3)

X fplrob expresses the local vehicle’s pose relative to the current
fingerprint and X0rob and X

0
fpl
expresses the vehicle and current

fingerprint absolute poses respectively.
Second, to obtain the global covariance of the current finger-

print P0fpl , we must apply (3) again, but this time to the previous
fingerprint, as shown in (4).

P0fpl =
∂X0fpl
∂X0fpl−1

· P0fpl−1 ·

(
∂X0fpl
∂X0fpl−1

)T

+
∂X0fpl
∂X fpl−1fpl

· P fpl−1fpl
·

(
∂X0fpl
∂X fpl−1fpl

)T
. (4)

We apply the same iterative procedure until we reach the first
fingerprint, where P0fpl = P

fp0
fpl
can be directly solved.

At the time of sub-map creation, the current vehicle’s local
uncertainty P fpl+1rob , conditioned to the new sub-map and on its
own frame, is set to 0 at the beginning. So, we assume a certain
position of the vehicle with respect to the newly created sub-map.
The current visible landmarks were observed within the previous
sub-map fpl, however, we remove them from that sub-map and
incorporate them in the new one fpl+1. Therefore, we start the new
sub-map with a number of already initialized landmarks, which
will have new local coordinates Y fpl+1i expressed on the new sub-
map. So, the total sub-map state vector starts in the following
Fig. 4. Representation of the vehicle’s global uncertainties PGrob , increasing along
the vehicle path at each of the fingerprint poses. Solid red lines represent the
vehicle’s global uncertainties at the SIFT fingerprint places. Numbers represent each
fingerprint. The graph also shows an example of a shorter path selection for global
uncertainty calculation after a loop-closing situation.

form X fpl+1 =
(
X fpl+1rob Y fpl+11 Y fpl+12 · · ·

)T
. To calculate Y fpl+1i

from their expression on the previous sub-map Y fpli , we apply the
common root coupling formula proposed on [23]. It allows changing
the base reference from fpl to fpl+1 using the common reference
of the vehicle X fpl+1rob on the new sub-map. We define X fpl+1rob = 0
because it is the base reference of fpl+1 at that time.
To obtain the landmark’s covariances expressed on the fpl+1

base frame we make use of the common root coupling as well (5).
If we assume P fpl+1rob = 0, the second term of Eq. (5) disappears and
P fpl+1YiYi

depends only on P robYiYi , which represents the uncertainty of
the landmark’s positions in the vehicle base frame.

P fpl+1YiYi
=
∂Y fpl+1i

∂Y robi
· P robYiYi ·

(
∂Y fpl+1i

∂Y robi

)T

+
∂Y fpl+1i

∂X robfpl+1
· P robfpl+1 ·

(
∂Y fpl+1i

∂X robfpl+1

)T
. (5)

In contrast to our method, in [24] they share landmarks
between sub-maps, in cases where the number exceeds a
threshold. Then, they create a link between the two sub-
maps, expressed through a similarity transformation. This way,
measuring shared landmarks allow not only the optimization of
the local sub-map but also the global one, even without closing
large loops. Because of the large size of the outdoor environments,
which is the objective of our work, common places, belonging to
different sub-maps, are not often visible at the same time, and
therefore no inter-node links will be usually added. Also data
association on low level landmarks is a quite difficult task on this
kind of large environment. Therefore, we solve that issue defining
an especial kind of fingerprint, denoted SIFT fingerprints, which
identify singular places, being able to re-identify them, closing a
loop and optimizing the global map. This is explained in the next
sub-sections.

5.2. SIFT fingerprints

Our system identifies a specific place using the SIFT fingerprints.
These fingerprints, apart from the vehicle’s pose, are composed
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Fig. 5. Fingerprint SIFT features matching. Outliers are marked in light colors. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

of a number of SIFT landmarks distributed across the reference
image and characterize the visual appearance of the image. SIFT
features were introduced by Lowe in [32–34]. SIFT features are
invariant to image scaling and rotation, and partially invariant
to changes in illumination and the 3D camera’s viewpoint. In
addition, the features are highly distinctive, which allows a single
feature to be correctly matched with a high probability. This is
achieved by the association of a 128 length descriptor to each of
the features, which will identify uniquely all of them. These SIFT
feature descriptors Eδ are loaded in each SIFT fingerprint joint to
the left image coordinates and the 3D vehicle’s position Yf qm =(
uL vL X Y Z Eδ

)
for the fingerprint matching process.

5.3. Loop closing detection

One of the main issues concerning SLAM in large environments
is the loop-closing problem. The first issue to solve is the recog-
nition of previously visited places. Once a new SIFT fingerprint is
generated it is matched with all stored SIFT fingerprints within the
uncertainty area defined by PGrob. This matching is carried out for
each pair of SIFT fingerprints (sfA, sfB), taking into account both
the number of recognized SIFT features and their relative positions
within the images to compare. The overall process is as follows:
1. Computation of the Euclidean distance between the de-

scriptors EδAi , Eδ
B
j of all detected SIFT features on both fingerprints

(sfA, sfB), which is shown in (6).{∥∥∥EδA1 − EδB1∥∥∥ , . . . , ∥∥∥EδA1 − EδBmB∥∥∥ , . . . , ∥∥∥EδAmA − EδBmB∥∥∥} . (6)

Then, we select those close enough as correctly matched. The
trigger value is empirically selected.
2. Lines connecting each pair ofmatched features are calculated.

The corresponding lengths LnA−Bi,j and slopes Sp
A−B
i,j are computed as

well as we depict on Fig. 5.
3. Outlier features are excluded from the computation by

using the RANSAC method. The model to fit is defined as the
vector

(
avg(LnA−Bi,j ), avg(Sp

A−B
i,j )

)
, containing the average lengths
and slopes of the connecting lines. RANSAC is applied to the whole
set of lines, calculating the Euclidean distance of all the individual
length/slope pairs to the average. Features whose connecting lines
pairs are close enough to the model are considered as inliers,
otherwise they are declared as outliers.
4. The global fingerprint matching probability is computed as a

weighted function of 2 parameters: Number of matched features
probability P(nmt) = nmt/m3 and Inliers/nmt relation, where nmt
represents the total number of matches (inliers + outliers) and
(m1,m2,m3)were experimentally obtained:

Pfp_match = m1 · P (nmt)+m2 (nI/nmt) . (7)

Obviously, P(nmt) can eventually be higher than 1, so we limited
the function to avoid this situation. Typical values for our
experiments arem1 = 2/3,m2 = 1/3 andm3 = 40.

5.4. Map correction

Once a loop-closing has been detected, the whole map must be
corrected according to the old place recognized. To do that, we use
theMLR algorithm [17]. The purpose of this algorithm is to assign a
globally consistent set of Cartesian coordinates to the fingerprints
of the graph based on local, inconsistent measurements, by trying
to maximize the total likelihood of all measurements. The reasons
for using it have been its highly efficient implementation in terms
of computational cost and the extremely high complexity allowed
for the relations between new and previously visited places.
This algorithm provides the ability of closing multiple loops

even in a hierarchical way. The MLR inputs are the relative poses
and covariances of the fingerprints. As outputs MLR returns the
most ‘‘likely’’ set of fingerprint poses, i.e., the set already corrected.
Due to the standard MLR does not provide corrected covariances
we have modified the method to calculate them.
TheMLR algorithmmanages only 2D information, therefore we

need to obtain the 2D related fingerprint pose X fpl2D and covariance
P fpl2D from X

fpl−1
fpl

and P fpl−1fpl
. First, the 2D pose is defined as: X fpl2D =(

x2D y2D θ2D

)T , i.e., the 2 planar coordinates and the orientation
angle. Then, we can relate both 2D and 3D poses as shown in (8).

X fpl2D =
(
xfpl−1fpl

z fpl−1fpl
2 arccos

(
q0
fpl−1
fpl

) )T
. (8)

Also, we compute the 2D covariance by using the corresponding
Jacobians depicted in (9).

P fpl2D =
∂X fpl2D
∂X fpl−1fpl

· P fpl−1fpl
·

(
∂X fpl2D
∂X fpl−1fpl

)T
. (9)

The MLR algorithm is based on a simpler one, which is called
SLR (Single Level Relaxation). The basic steps of the SLR are, first
compute a quadratic error function of the fingerprints with the
form:

Ψ 2 (XM) = (XM)T AMXM − 2 (XM)T bM (10)

where XM =
(
Xc0fp1 Xc0fp2 · · · Xc

0
fpL

)T
represents the total

vector of the whole set of 2D corrected poses. In this case, the
poses are expressed in global coordinates. After that, it finds XM to
minimize Ψ 2, which is done by solving AMXM = bM . The efficient
way of solving this equation is the key of the relaxation technique.
The Ψ 2 error function is defined specifically as follows:

Ψ 2 (XM) =
L∑
l=0

(
η
fpl
2D

)T (
P fpl2D
)−1

η
fpl
2D (11)

where, for each of the fingerprints:

η
fpl
2D = fM

(
Xc0fpl , Xc

0
fpl−1

)
− X fpl2D (12)
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Fig. 6. Detail on the first test path showing landmark global uncertainties as a result of only the low level SLAM estimation (up) and after applying high level SLAM
optimization (down).
fM expresses Xc0fpl into Xc
0
fpl−1

coordinates, therefore ηfpl2D is the
difference between the corrected pose and the estimated one.
Linearizing fM as shown in [17], Eq. (11) can be expressed in
the form of (10). The basic idea of the relaxation is to exploit
the sparsity of AMXM = bM and solve it one block-row at a
time, corresponding to one of the fingerprint poses Xc0fpl of the
total vector XM , considering all the rest as constant. Repeating the
procedure for the rest of fingerprints in an iterative procedure the
equation is efficiently solved.
The MLR improvement is based on the idea of simplifying

the calculation of AMXM = bM by reducing (discretizing) the
number of poses iteratively to a half each time. Several hierarchical
levels are defined, one per each discretization step. At the coarsest
level, the residual equation is directly solved using the Cholesky
factorization method. Finally, the solution is interpolated through
each of the levels to the finest one in order to obtain the result of
the original equation. This down–up–down cycle is known as the
V-cycle.
Once the 2D corrected vector has been calculated we obtain the

corresponding 3D corrected fingerprints. At the step of obtaining
2D from the 3D poses (see (8)), we lose the yfpl−1fpl

coordinate
(altitude) information. Therefore, when going back from 2D to
3D again we have to set this value. We take the assumption of a
flat terrain, because our system is mounted on a commercial car
driving in a flat urban area, so, this value will be taken as 0. Then,
we form the corrected pose vector for each fingerprint as:

X0fpl =
(
x0fpl 0 y0fpl cos

θ0fpl

2
0 sin

θ0fpl

2
0

)T
. (13)

As we explained before, the standard MLR method does not
provide a means to obtain the corrected global covariances of the
fingerprints. The reason is because the method is based uniquely
on the relative covariances between poses. As we have shown, our
system does not need to know the global covariances to perform
a map optimization. However, in order to have a rough estimation
of the revisited SIFT fingerprints, it is needed to keep the global
uncertainty of the vehicle updated. After we close a loop, there is a
situation where one fingerprint has relations with more than one
additional fingerprint, as occurs, for example, to sf3 (see Fig. 4).
To calculate the global vehicle uncertainty PGrob, we must apply
the recursive coupling formula showed in (3). In order to reach
rob position we can couple local fingerprints uncertainties starting
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from fp0 going through the shaded node’s path or also covering the
white node’s path instead. Due to the shorter path, choosing the
first option will lead to a lower PGrob than choosing the second. By
closing the marked loop we have implicitly reinitialized the global
uncertainty at that moment to the one associated to sf3, therefore
reducing it. So as a rule, to calculate the current PGrob we apply
the recursive formula to the shortest possible path from the first
fingerprint to the current position.
Being aware of the current global uncertainty is important in

order to increase the fingerprint search process efficiency because
the number of SIFT fingerprints matched will be lower.
The last step is to transfer the correction performed on the high

SLAM level into the Low SLAM level. This is done by applying the
same transformation of each fingerprint pose to all the landmarks
within the sub-map. By doing this, we keep the relative positions of
the landmarks unchangedwith respect to their corresponding local
sub-map reference frame. Therefore, landmark covariances remain
unchanged in the frame of each sub-map. However, to represent
their global uncertainties, we show on Fig. 6 a portion of one of the
paths used for testing purposes. We represent the global feature
covariances using just the EKF on the local maps (Fig. 6 (up)) and
after applying the MLR optimization (Fig. 6 (down)).

6. Results

Although the system has been designed to work online and
several online testswere carried out, to further analyze its behavior
several video sequences were collected from a commercial car
manually driven in large urban areas. The employed cameras for
the stereo pair were the Unibrain Fire-i IEEE1394 with additional
wide-angle lens, which provide a field of view of around 100°
horizontal and vertical with a resolution of 320× 240.
The baseline of the stereo camera was 40 cm. Both cameras

were synchronized at the time of commanding the start of
transmission. The cameras were mounted inside the car on the top
of the windscreen. The calibration was performed offline using a
chessboard panel using the method referenced in [32]. The first
video sequence was taken by covering with the car the urban path
showed on Fig. 7. The average speed of the carwas around 30 km/h.
The complete covered path was 2.27 km long. It contained 3 loops
inside, taking 7250 low level landmarks and 235 fingerprints.
The second one was taken on an urban environment as well,

and followed the path showed on Fig. 8. The average speed of the
car was approximately the same than in the first sequence, but
in this case the length covered was 2.19 km. It contained 4 loops
inside, taking 8130 low level landmarks and 230 fingerprints. To
evaluate the performance of our system we compared our results
with a ground truth reference. This ground truthwas obtainedwith
an RTK-GPS Maxor GGDT, which provides an estimated accuracy
of 2 cm. On the other hand, we collected together car positions
obtained from a standard low-cost GPS Navilock NL-302U with
an accuracy ranging from 1.5 m to 6 m, to analyze them, taking
in mind a future integration of this sensor in our current SLAM
system. Fig. 9 depicts the estimation of our SLAM system and the
standard GPS compared to the ground truth. We can highlight the
relatively low error on the initial part (up) of the SLAM estimation,
taking into account that no other sensors were used to help on
that task. Because of the long length of the straight segment
going to the lower part (about 350 m) and the reduced number
of near landmarks taken in this section due to the open-spaced
environment (no buildings close the path), there is a significant
accumulated error on the estimation of the trajectory.
However, it has to be noticed that the relative error, once closed

that loop, is still low.
We have also calculated the mean error relative to the ground

truth of both the standard GPS and our SLAM implementation (see
Fig. 10). The first observation is that the error using our method
Table 1
Processing times.

Low level SLAM processing times High level SLAM processing
times (parallelized)

Number of features / frame 5 Number of features 7250
Number of fingerprints 235

Filter step Time Time
Measurements 3 ms Fingerprint matches 3 s

Filter update 5 ms Loop closing 1 sFeature initializations 7 ms

Fig. 7. Aerial view of the path for the first test. The starting point is indicated.

is around 60 m as much. Obviously, as long as the vehicle covers
more distance the errors using only visual SLAM are higher than
using a GPS. However, looking at the GPS error, we observe that, at
certain parts of the path, this error is very high because no GPS data
were received. This effect was due to the high buildings located
in that place, which caused the satellite signals to be not visible
and as a consequence the GPS was unable to provide a location
of the vehicle. As a greater number and taller buildings are in an
urban area a greater probability of GPS loss exists. Therefore, in
these cases, even the absolute error on the estimation provided by
our system is much lower than the GPS one. Moreover, focusing
in the moment right after the second period of GPS loss, we can
see how the error on the GPS estimation grows clearly faster
than our method. This means that, at this time the visual data is
more reliable than the GPS. Taking into account the results, if we
combine both visual SLAM and a low cost GPS, we should be able
to obtain a similar accuracy of a high quality GPS at a much lower
cost. Therefore, as a future work, we plan to integrate both the
standard GPS and visual sensors to improve the global estimation.
On Fig. 11 we show the map representation for the estimation
made by our system. In this case we applied the system to the
second test environment. The low level landmarks are marked in a
yellow color. The ordinary fingerprints, drawn in a green color, are
also marked with their associated identification number. On each
of the turns performed by the vehicle, a SIFT fingerprint was taken.
These fingerprints are shown in a red color. Some of these places
were the ones where the 4 loops closings took place.
With respect to the processing time, the real-time implemen-

tation imposes a time constraint, which shall not exceed 33 ms for
a 30 frames per second capture rate.
All results were taken using an AMD Turion 2.0 GHz CPU. Fig. 12

depicts the total processing times along the whole vehicle path for
the first test. As we can see our method is able to work under a
real time constraint, the average processing time remaining quite
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Fig. 8. Aerial view of the path for the second test case. The starting and end point
is indicated.

Fig. 9. Path estimation using our SLAM method, a standard low-cost GPS and the
ground truth.

Fig. 10. Average distance error on the path using standard GPS (dashed line) and
our SLAM system (solid line) relative to the RTK-GPS reference.

constant along thewhole path, even during loop closing situations.
On Table 1 we show the average processing times for some of the
most important tasks in the process. Focusing on the low level
SLAM tasks, we can see that a higher time is used on the landmark’s
Fig. 11. Map representation estimated by our system. In yellow we depict the
visual landmarks acquired by the system. The ordinary fingerprints are shown and
numbered in a green color. The SIFT fingerprints are represented by a red color (on
the turns of the vehicle). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. Processing times for the whole tasks. Real time limit is represented as
a constant 33 ms black line. Frames where a loop closing takes place are marked
using vertical lines, showing the global processing time value associated to them.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

initialization phase due to the large search area along the epipolar
line, even though we restricted its length for 1 m → ∞ search
range.
Regarding the high level SLAM, time dedicated to SIFT

fingerprint matching process as well as the correction of the map
at the time of loop closing, having 7250 landmarks, is slightly
higher than real time. However, both tasks do not belong to the
continuous self-locating process carried out by the low level SLAM,
so, there is no need to complete them within a single frame time
slot. Therefore,we can obtain a positive fingerprintmatching result
some few frames after it was really detected. Then, we can go
back and start the loop-closing task. This implies that both of these
tasks can be computed in parallel, keeping them outside the real
time computation. A similar idea was recently presented in [35].
They implemented a SLAM system for a small indoor workspace,
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Table 2
Performance and test results of different SLAM algorithms.

Method Memory Update Global update Loop closing Measured update Measured loop

Maximum likelihood m (n+ p)3 (n+ p)3 (n+ p)3 �EKF �EKF
EKF n2 n2 n2 n2 �CEKF �CEKF
CEKF n3/2 k2 kn3/2 kn3/2 232 ms 82.2 s
SLR kn kn kn kn2 24 ms 4.2 s
FastSLAM Mn M log n M log n M log n 339 ms 339 ms
SEIF kn k2 k2 k2 – –
TJTF k2n k3 k3n k3n – –
Treemap kn k2 k3 log n k3 log n 22 ms 966 ms

MLR kn kn kn kn 935 ms 935 ms

Hierarchical: MLR+ EKF kn k2 kn kn 21 ms 935 ms
Table 3
Robustness to illumination changes.

% False positives / % False negatives Daylight morning Daylight afternoon At sunset At night

Daylight morning 0/7.5 1/10 0/10 0/40
Daylight afternoon 1/7.5 0/12.5 0/32.5
At sunset 0/10 0/35
At night 0/20
where tracking and location tasks, in one hand and mapping
and optimization tasks in the other hand are split independently.
Then, both of them are computed in parallel using a dual-core
processor. The main difference with our approach is that we
maintain a joint location andmapping low-level task, while adding
an additional higher level global optimization process, which is
computed in parallel. We apply our method to large-scale outdoor
environments. So, there is not much advantage on implementing
a separated mapping process due to the need of including new
landmarks continuously. Also, we keep the ability of continuously
optimize the localmaps thanks to the joint low level SLAMprocess.
On Table 2 we compare the memory requirements and the

computational cost of our system with respect to other well-
known methods, according to the operation number carried out
for each stage of the algorithm. We have based this study on the
figures presented in [17]. In the table, n is the total number of
landmarks of the global map, mmeasurements, p robot poses and
k landmarks within the local sub-map. We have tested most of
these methods, obtaining the average computation times showed
on the table. Loop detection + global map optimization times are
obtained without the implementation of any concurrent method.
As can be observed, the lowest time consumingmethod is theMLR
applied to our hierarchical SLAM implementation.
On Table 3 we show a comparative study of the robustness

to illumination changes. We focused on the SIFT fingerprint
matching process. We took a 40 image database of the same place
at different times along the day. We registered the number of
erroneousmatchings (false positives) aswell asmissing ones (false
negatives). From the results we can conclude that the probability
of a false positive is extremely low, keeping reasonable values for
false negatives in daylight. During the night results get worse on
false negatives, mainly due to the decrease of illuminated areas.

7. Conclusion

In this paper we have presented a hierarchical SLAM of two
levels (topological/metric) that allows self-locating a vehicle in a
large-scale outdoor urban environment using a wide-angle stereo
camera as the only sensor. Using this hierarchical strategy, on one
hand, we keep a local consistency of the metric sub-maps by mean
of the EKF (low SLAM level) and global consistency by using a
topological map and the MLR algorithm. On the other hand, our
method is able to work under a real time constraint, the average
processing time remaining quite constant for very large-scale
environments. We have shown that our visual SLAM can improve
the accuracy of a low-cost GPS under certain circumstances,
enhancing its behavior. Therefore combining both low-cost GPS
and vision we can reach a similar accuracy to a high quality GPS.
One limitation of our system is that a flat terrain is assumed for
matching the 2D map of the topological level with the 3D maps
of the metric one. Our method can cope with 3D motions to a
certain extent but a graceful degradation in map accuracy appears
as the roughness of the terrain increases. In extreme cases it is
possible that our method would create inconsistent maps. On the
other hand, loop closing detection strongly depends on the visual
appearance of images taken almost in the same place. As future
work, we plan to generalize the MLR algorithm in order to manage
3D characteristics and to fuse a low-cost GPS sensor with our
current system to improve the loop closing detection and the GPS
losses. Our final goal is the autonomous outdoor navigation of a
vehicle in large-scale urban environments. Regarding processing
times, the multi-hypothesis tracking application will be studied.
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