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Abstract The work presented in this paper is a part of research work on autonom-
ous navigation for Micro Aerial Vehicles (MAVs). Simultaneous Localization and
Mapping (SLAM) is crucial for any task of MAV navigation. The limited payload
of the MAV makes the single camera as best solution for SLAM problem. In this
paper the Large Scale Dense SLAM (LSD-SLAM) pose is fused with inertial data
using Smooth Variable Structure Filter which is a robust filter. Our MAV-SVSF-
SLAM application is developed under Linux using Robotic Operating System
(ROS) so that the code can be distributed in different nodes, to be used in other
applications of guidance, control and navigation. The proposed approach is vali-
dated first in simulation, then experimentally using the Bebop Quadrotor in indoor
and outdoor environment and good results have been obtained.
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1 Introduction

Self-localization of unmanned vehicles (UV) is still considered as a fundamental
problem in autonomous vehicle navigation. The problem has been tackled in the
recent past for different platforms and a number of efficient techniques were pro-
posed as presented in Cox and Wilfong [1]. Many research works about optimal
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and robust data fusion have been presented in literature, Toledo-Moreo et al [2]
Leonard and Durrant-Whyte [3], Toth [4]. More recently, driven by the interest of
military applications and planetary explorations, researchers have turned their
attention towards localization of vehicles moving in hostile and unknown envi-
ronments [5, 6]. In these cases, a map of the environment is not available and
hence a more complex simultaneous localization and mapping (SLAM) problem
must be faced and solved.

Various techniques exist for robot pose estimation, including mechanical odo-
meter, GPS, LASER, INS and cameras[7]. However in recent years the use of
computer vision has always attracted researchers because of the analogy that we
can do with the human tracking system.

SLAM has often been performed using a single camera, stereo cameras and re-
cently, with the apparition of depth (RGBD) camera, RGBD-SLAM became an
interesting solution.

Solve the Visual SLAM for Mini Aerial Vehicle (MAV) is a real challenge es-
pecially in GPS denied regions. Many alternatives of Aerial SLAM are imple-
mented using LASER, Vision, and RGBD camera. However majority of these
solutions cannot be used for MAV which can carry a limited payload (between 60-
100 g). Thus, the best solution of the MAV- SLAM is to use a single camera.

The main contribution of this paper is to propose a robust solution for 6DoF-
MAV-SLAM by fusing the pose given by the Large Scale Dense SLAM, and that
given by the inertial navigation system using the Smooth Variable Structure Filter
(SVSF). The algorithm is developed under Linux using ROS (Robotic Operating
System) so that the code can be distributed in different nodes, to be used in other
applications of control and navigation. The proposed solution should be able to:
localize the MAV in indoor environment, should be robust face any photometric
and geometric change and can maintain suitable pose accuracy even when the
visual information is lost.

This paper is organized as follows, in section 2, previous work on single cam-
era SLAM for MAV are presented. In section 3 process and observation model for
IMU/LSD-SLAM algorithm are detailed. The Smooth Variable Structure Filter
(SVSF) is presented in section 4. After that, the proposed algorithms are imple-
mented and validated in simulation and experimentally in section 5. Finally, in
section 6, conclusion and perspectives are given.

2 Single Camera SLAM for MAV

Real-time monocular Simultaneous Localization and Mapping (SLAM) have become
very popular research topics. Two major reasons are (1) their use in robotics, in partic-
ular to navigate unmanned aerial vehicles (UAVs) [8, 9, 10], and (2) augmented and
virtual reality applications slowly making their way into the mass-market.

2.1 Direct Methods SLAM

Direct Visual Odometry (VO) methods are very interesting for real time applica-
tion by optimizing the geometry directly on the image intensities, which enables
using all information in the image.
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2.2  Large Scale Direct SLAM

Large-Scale Direct SLAM (LSD-SLAM) method, not only locally tracks the mo-
tion of the camera, but allows building consistent, large-scale maps of the envi-
ronment. The method uses direct image alignment coupled with filtering-based
estimation of semi-dense depth maps as originally proposed in [11]. The global
map is represented as a pose graph consisting of keyframes as vertices with 3D
similarity transforms as edges, elegantly incorporating changing scale of the envi-
ronment and allowing detection and correction of the accumulated drift. The me-
thod runs in real-time on a CPU and even on a modern Smartphone [11]. The al-
gorithm LSD SLAM consists of three major components: tracking, depth map
estimation and map optimization as visualized in Figure. 1:
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Fig. 1 Overview over the complete LSD-SLAM algorithm [11].

2.3 LSD-SLAM Limitations

Large-Scale Direct monocular SLAM (LSD-SLAM), have many advantages,
firstly, it requires only a single camera, secondly, it constructs high quality map at
different scales and finally and more importantly it can be run in real time on a
CPU and even on a modern Smartphone. However, the LSD-SLAM algorithm
suffers from several limits. Then, solving the MAV-SLAM using LSD-SLAM
presents many drawbacks: - Pose and Map constructed up to scale, - very sensitive
to photometric changes, - the observed scene must contain different textures and
depths, - pure rotation motion cannot be estimated, - sensitive to dynamic scene.
As solution, and in order to improve the performances (robustness, accuracy) of
the LSD-SLAM we propose to fuse the LSD-SLAM position with inertial data
using an Inertial Measurement Unit (IMU).

3 IMU/LSD-SLAM Fusion

In our work, we are using the Quadrotor Bebop which has a camera, IMU
and GPS (Figure 4). For Indoor applications the GPS signal is not available.

elena@depeca.uah.es



560 A. Nemra et al.

Therefore, fuse IMU with camera data for localization and mapping is very inter-
esting especially if the application run in real time. Furthermore, the presence of
IMU data makes our MAV-SLAM able to maintain right 6DOF pose even when
the visual information is not available. The proposed SLAM solution is developed
under Linux using ROS (Robotic Operating System) which gives it many advan-
tages (Parallelism, Real time, 3D map view).

3.1 Process Model (Inertial Measurement Unit)

The sate vector to be used in our SLMA problem is given by:
Xx=[* Y zZ u v w ¢ 9 43 dqa]* (1)

Where: (X ¥ Z) the position of the UAV in the navigation frame, (u v W) :
the velocities of the UAV in the body frame, (4; 92 93 94) : are the quater-
nion to represents the MAV orientation.

The cinematic model of the MAV is given by:

X = f(Xoq) + wye (2)
p™(k) p"(k — 1) + v™(k)At
X = [v"R) [ = [v"0 = 1) + [CR U — D (k) + g"AL | + wy 3)
Y" (k) Y (k — 1) + ER(k — Do (k)At

Wy is the process noise, p", v and Y™ are position velocity and orientation in
the navigation frame. Where f° and w® are the body-frame referenced vehicle
accelerations and rotation rates which are provided by inertial sensors on the ve-
hicle and g" is the acceleration due to gravity. Cj and Ep are respectively the di-
rection cosine matrix and rotation rate transformation matrix between the body
and navigation frames.

3.2 Observation Model (LSD-SLAM Pose)

The position given by the LSD-SLAM will be used as observation, as follows:

Zk=h(XAk)
X1 /10 00000 00 0
[4|0100000000|
Zz| [0 0100000 0 O]
Zy=|al=lo 0 00 0 01 0 0 ol[%X] 4)
2] lo o oo 00010 ol
Ilq3J||l0000000010J|
] lo 0o 00000 o001

As can be seen from Eq.4, the observation model is linear which is suitable for the
Smooth Variable Structure Filter (SVSF) which is the subject of the next section.
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4 Smooth Variable Structure Filter

While EKF-SLAM and FastSLAM are the two most popular solution methods for
SLAM problem, newer alternatives, which offer much potential, have been pro-
posed, including the use of the unscented Kalman filter (UKF) proposed by Julier
and Uhlmann in SLAM [12]. Unlike the (EKF), the (UKF) uses a set of chosen
samples to represent the state distribution. The UKF-SLAM avoids the calculation
of the Jacobean and Hessian matrices but also obtain higher approximation accu-
racy with the unscented transformation (UT) [13]. However, for high-dimensional
systems, the computation time is still heavy; thus, the filter converges slowly.

However, the above filters are all based on the framework of the Kalman filter
(KF); it can only achieve a good performance under the assumption that the com-
plete and exact information of the process model, observation model and noise
distribution have to be a priori known.

To overcome some of these limitations, we propose to use the SVSF filter to
solve the SLAM problem. Based on sliding mode concepts the first version of the
variable structure filter (VSF) was introduced in 2003 [15]. On 2007, the smooth-
ing variable structure filter (SVSF) which is relatively a new filter is introduced
[14]. Tt is a predictor/corrector estimator based on sliding mode control theory and
variable structure estimation concepts. In its old form, the SVSF is not a classical
filter in the sense that it does not have a covariance matrix.

4.1 SVSF Principal

Essentially this method makes use of the variable structure theory and sliding
mode concepts. It uses a switching gain to converge the estimates to within a
boundary of the true state values (i.e., existence subspace shown in Figure. 2).

The SVSF has been shown to be stable and robust to modeling uncertainties
and noise, when given an upper bound on the level of un-modeled dynamics and
noise. The SVSF method is model based and may be applied to differentiable
linear or nonlinear dynamic equations. An augmented form of the SVSF was
presented in [16], which includes a full derivation for the filter using covariance
matrices.
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Fig. 2 The SVSF estimation concepts [15].
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The basic estimation concept of the SVSF is shown in Figure 2. Some initial
values of the estimated states are made based on probability distributions or de-
signer knowledge. An area around the true system state trajectory is defined as the
existence subspace. Through the use of the SVSF gain, the estimated state will be
forced to within this region. Once the value enters the existence subspace, the
estimated state is forced into switching along the system state trajectory.

The estimation process is iterative and may be summarized by the following set
of equations (for control or estimation problem) [16]. Like the KF, the system
model is used to calculate a priori state as follows:

Xos0 = Xo
Ez0/0 = Ezp
Kesrsie = F(Kiesio U) ()
Zk+1/k = h(XAk+1/k) (6)
Ez,k+1/k =Zk41— Zk+1/k @)

Ky = diag [(lEz,k+1/k|AbS + y|Ez,k/k|Abs) Osat(ll_)_lEz,k+1/k)] [diag(Ez,k+1/k)]_1 ()

Where © signifies Schur (or element-by-element) multiplication, the superscript +
refers to the pseudo inverse of a matrix and ™! is a diagonal matrix constructed
from the smoothing boundary layer vector s, such that:

1
— 0 0
_ ] L Y1
Y~ = [Diag)]""=[0 -~ (1) )
0 0 —
Ym
1, Epixriyi/Wi =1
sat (Y'E, = Epikr1// Wi —1 < Egpsap/Wi <1 (10)
k+1/k
-1, Ezigrryi/¥i < —1
)?k+1/k+1 = XAk+1/k + K 1Bz kv1/k (11)
Zk+1/k+1 = h(XAk+1/k+1) (12)
Ez,k+1/k+1 =Zys1— Zk+1/k+1 (13)

Two critical variables in this process are the a priori and a posteriori measure-
ments error estimates, defined by (Eq.6 and 7). Note that (Eq.7) is the a posteriori
measurement error estimates from the previous time step, and is used only to cal-
culate the SVSF gain. The value of the smoothing boundary layer width vector s
reflects the level of uncertainties and errors modelling affecting our observation
model.
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5 Results and Discussion

To validate the performances of the proposed approaches, we first evaluate the
performances of the SVSF filter in simulation. After that, the SVSF-SLAM will be
validated using the new Bebop (Figure 4).

5.1 Simulation Results

In this simulation we consider a MAV navigating using an inertial measurement
unit and LSD-SLAM pose. We assume that (between t = 600s and t = 800s)
the MAV passes by a uniform region (or dark region) and no feature is detected.
In other word, during this region the LSD-SLAM gives completely a wrong posi-
tion (red triangle in Fig.3) with large uncertainty. As can be seen from Figure 3
when the LSD-SLAM position is lost the MAV keep follows the IMU position
(blue trajectory). When t >800s the visual information return back and the LSD-
SLAM pose will be fused with the IMU position again using SVSF filter.
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Fig. 3 Comparison of IMU, LSDVSLAM and SVSF position when visual information is
not available

5.2 Experimental Results
The proposed solution of SVSF-SLAM is validated using the new MAV of parrot

called Bebop (Figure 4). This latter is commercialized in December 2014 and have
many advantages compared to the AR Drone2.
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e MAYV Bebop Main Features
- Capture 1080p Video and 14MP Photos, 3-Axis Sensor (accelerometer,
gyroscope and magnetometer), Linux-Based Flight Computer, Dual-core
CPU, ARM 9, quad-core GPU, and 8GB of flash memory.

Fig. 4 The experimental platform the new Parrot Bebop

Experiment 1 (Indoor):

In this experiment the Quadrotor Bebop navigates in indoor environment (Figure 5).
Figure 6, shows the acquired image (a), the tracked features (b) and the corres-
ponding covariance for these features (c) using color representation. As can be
seen, in this algorithm, corners and edges are selected as features, which is very
important for robustness. Moreover, in the first image (¢) where depth is initia-
lized randomly then, its covariance was large (Red color), and during navigation
using stereovision (Multiple view) this covariance decreases (green color).

Fig. 5 Picture of Laboratory Alcala University

517
Al

@ (b) ' (©

Fig. 6 Experimental validation of the IMU/LSD-SLAM algorithm (a) level gray image,
(b) Features extraction and depth estimation, (c) Colour representation of the estimated
depth variance.
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Figure 7 shows the pose of the Bebop and the constructed map during naviga-

tion. The red camera represents the current position where the blue one represents
the keyframe position.

Experiment 2 (Outdoor):

In this experiment the Quadrotor Bebop navigates in outdoor environment, the
UAH University (Figure 8).
Figure 9 shows the pose of the Bebop and the constructed map during naviga-

tion. From Figure 9 we can observe that a good map is constructed with the MAV-
SLAM as well as the followed trajectory.

Fig. 7 Bebop localization and 3D map building using IMU/LSD-SLAM

Laum enm Ju8 [

Fig. 8 Picture of the UAH University (Alcala)  Fig. 9 Localization and 3D map building
using MAV-SLAM algorithm
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Experiment 3 (LSD-SLAM Pose Lost):

In this experiment which is done indoor (no GPS signal) we want to validate the
robustness of our algorithm SVSF-IMU/LSD-SLAM. For that, during Bebop na-
vigation we will hide the Bebop camera for a while (20 s) to see how the
IMU/LSD-SLAM algorithm can maintain a suitable pose estimation.

Fig. 10 Acquired image by the Bebop camera (missing of visual information for 20 s)

Figure 10 shows few acquired images by the Bebop, as can be seen some of
them are completely ambiguous. Figure 11 shows the Bebop pose and the con-
structed map using only the LSD-SLAM algorithm, it is clear that the algorithm
cannot estimate any camera (Bebop) pose when the image information is not
available. Let's see what SVSF-IMU/LSD-SLAM filter can do to solve this prob-
lem. To improve the quality of the pose estimation inertial data will be used.

Fig. 11 Pose estimation and 3D map construction using LSD-SLAM (dashed ellipse images
missing, LSD-SLAM cannot estimate any Bebop position).

Figure 12 shows the angular rates and the accelerations -following the three
axis- given by the IMU during the Quadrotor navigation, when, Figure 13 shows
the Bebop position given only by integrating IMU data, this latter is good for short
term but it suffers from drift for long term navigation. Figure 14 shows the pose
and the map of the IMU/LSD-SLAM algorithm. However because the LSD-
SLAM pose is given up to unknown scale, this latter is estimated by calculating
the rate between IMU-pose and LSD-SLAM-pose for few iterations in the begin-
ning, in our case the scale factor = 6. As can be seen from Figure 14, even when
visual information is not available (dark region) our algorithm maintains a suitable
position of the Bebop Quadrotor.
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Z position (m)

Y position (m) X position (m)

Fig. 13 Bebop position given by the IMU

Fig. 14 Pose estimation and 3D map construction using IMU/LSD-SLAM (dashed ellipse
visual information is not available, IMU/LSD-SLAM can estimate the Bebop position)
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6 Conclusion

The work presented in this paper is a part of autonomous navigation for MAV.
The objective was to propose an online SLAM solution for an MAV (Parrot Be-
bop). For that purpose, the LSD-SLAM algorithm is fused with the IMU data
using SVSF filter to improve the robustness of the proposed SLAM solution, and
make it able to estimate accurate pose even if the visual information is not availa-
ble (images without textures, dark area...). Finally, the proposed approach is
validated first in simulation, then with experiment data in indoor and outdoor en-
vironment and good results have been obtained. The next objective of our work is
to implement a new version of the MAV-SLAM which should be able to estimate
accurate position even in dynamic environment.
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