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Abstract. This paper shows the results obtained in controlling a mobile robot by means of local
recurrent neural networks based on a radial basis function (RBF) type architecture. The model
used has a Finite Impulse Response (FIR) ¢lter feeding back each neuron's output to its own
input, while using another FIR ¢lter as a synaptic connection. The network parameters
(coef¢cients of both ¢lters) are adjusted by means of the gradient descent technique, thus
obtaining the stability conditions of the process. As a practical application the system has been
successfully used for controlling awheelchair, using an architecturemade up bya neurocontroller
and a neuroidenti¢er. The role of the latter, connected up in parallel with the wheelchair, is to
propagate the control error to the neurocontroller, thus cutting down the control error in each
working cycle.

Key words: intelligent control, Lyapunov stability, radial basis function, recurrent neural
network.

1. Introduction

Recurrent neural systems have demonstrated their usefulness in non-linear,
time-variant systems. When setting up a recurrent neural network the difference
between the various architectures resides in how to include the feedback in the
network [1]: externally as in the networks Tapped Delay Line, the model of Elman
[2] or the model of Narendra Parthasarathy (NARX neural network) [3] or
internally. Within the latter group one option is a totally recurrent network formed
by one or several neuron layers totally connected up to each other. But this type
of architecture has serious drawbacks, such as great structural complexity and slow
and laborious training [4]. This is because the models in question are very general
and in principle valid for any type of dynamic system; in the case of speci¢c
problems, therefore, involving a certain previous knowledge, it is better to use
simpler models. Other possibilities could be to include the feedback within each
neuron, using FIR/IIR ¢lters as synaptic connections [5], memory units [6], etc.

Past studies have shown that local recurrence architectures behave better and
converge more quickly than totally connected-up networks. They also have certain
stability and learning advantages. It is said that these models work well in systems
that can be uncoupled into several low-dynamic-order systems, such as chaotic
systems with recognizable periodicity and oscillatory models and in speech
recognition with format content [7].
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This paper presents a neural model based on RBF type architecture with local
recurrence and weights formed by FIR ¢lters. Both ideas arose from the works
of Ku and Lee [8] and Ciocoiu [5]. The main contribution of this paper being
the generalization of the model to systems with any number of inputs and two
outputs, plus the practical application of said model.

The use of neural networks as control systems has recently been the subject of
several scienti¢c reports. One of these involved Etxebarria [9] using a linear network
as the identi¢er for the adaptive control of discrete linear systems. Zhang et al. [10]
used a direct controller in which, instead of calculating the plant Jacobian, the
variation of the output over the input is obtained to control a ship. Yuan et al. [11]
used an algorithm that is valid for functions of the type y�k� 1� � u�k��
f �y�k�; y�kÿ 1��. Maeda and Figueiredo [12] used a time-delay type neural network
to control a two-link planar arm, using simultaneous perturbation without requiring
information about the sensitivity function, while Noriega and Wang [13] also used
time-delay type neural networks to implement a control architecture for unknown
non-linear systems, minimizing an error function that includes forecasts of the future
performance of the plant to be controlled (predictive control).

The main objective of our research was to set up an adaptive neural control system
for controlling the movements of a wheelchair. This type of vehicle is characterized
by its nonlinear dynamics, which changes with the working conditions: type of £oor,
state of batteries, weight of the person, etc. Preliminary works with linear controllers
showed the control system have excess thrust in the initial moments of operation
leading to abrupt movements of the wheelchair [14].

2. Neural Model

2.1. ARCHITECTURE AND TRAINING

The neural network used is a model with an architecture based on radial basis
functions (RBF) with FIR ¢lters for feedback and with additional FIR ¢lters as
synaptic connections (Figure 1). For a two-input (x1(k), x2(k)) two-output (yN1(k),
yN2(k)) system, the model equations are

gi�k� � eÿ
�x1 �k��x0i1 �k�ÿCi1 �

2��x2 �k��x0i2�k�ÿCi2�
2

s2 ; i � 1; . . .N: �1�
The center of each function is Ci � �Ci1;Ci2� and they are shared out evenly in the
input space; s is a constant modulating the activation zone of each neuron. The
¢lter output acting as feedback for each neuron depends on the previous outputs
of said neuron and the ¢lter coef¢cients:

x0im �
XS
j�1

aimj:gi�kÿ j�; m � 1; 2: �2�

FIR ¢lters are used as synaptic connections so that the previous outputs of each
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neuron are taken into account:

yip�k� �
XRÿ1
j�0

wipj�k�:gi�kÿ j�: �3�

Finally the outputs of the neural model are the sum of the ¢lter outputs acting as
synaptic connections:

yNp�k� �
XN
i�1

yip�k�; p � 1; 2: �4�

As can be seen the neural model used has local activation feedback in each neuron
plus FIR-¢lter-based local synapse feedback according to the criterion indicated in
[4]. The error function to be minimized is obtained from the following equation:

E�k� � 1
2
�yN1�k� ÿ yd1�k��2 � 1

2
�yN2�k� ÿ yd2�k��2: �5�

The objective of the training phase is to vary the synaptic ¢lter coef¢cients (wipj) and
the feedback ¢lter coef¢cients (aimj) to minimize (5). To this end the gradient descent
technique is used. For the ¢rst one:

Dwipj�k� � ÿa: @E�k�wipj�k� � ÿa:
@E�k�
@yNp�k� :

@yNp�k�
@yip�k� :

@yip�k�
@wipj�k�

� �a:�ydp ÿ yNp�:gi�kÿ j�:
�6�

Figure 1. Neural network model.
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For feedback ¢lter coef¢cients:

Daimj�k� � ÿa: @E�k�
@aimj�k� � ÿa:

@E�k�
@yN1�k� :

@yN1�k�
@gi�k� :

@E�k�
@yN2�k� :

@yN2�k�
@gi�k�

� �
:
@gi�k�
@aimj�k�

� �a:��yd1�k� ÿ yN1�k��:wi10 � �yd2�k� ÿ yN2�k��:wi20� �

� gi�kÿ j� �
XS
t�1

aimt:
@gi�kÿ t�
@aimj

" #
:
@gi�k�
@x0im�k�

:

�7�
As can be seen in the above equation, adjustment of the neuron's feedback ¢lter
coef¢cients has to be done by means of a recurrent expression that takes into account
adjustments already made in working cycles before the moment k.

2.2. STABILITY

In this section a maximum in the value of the learning factor (a) is found in such a
way that it ensures that the training error E�k� decreases or at least does not increase.
A vector W containing all the adjustable coef¢cients of the neural network is
considered. It can be demonstrated that in a two-output neural network using
the gradient descent technique, a suf¢cient condition for making sure that
E�k�ÿE�kÿ 1�W 0 is [15]:

0 < a <
1

k @yNp�k�
@W�k� k

2
: �8�

This expression has to be individualized for each neural model considered. In the
model of Figure 1:

W � �w110; . . .wN2�Rÿ1�; a111; . . . aN2S�T : �9�

The total number of elements of W is 2NR� 2NS corresponding respectively to the
synaptic ¢lters and feedback ¢lters. If all elements of matrix W are limited between
�1 and ÿ1, and considering the equations of the neural model:

k @yNp

@wipj
kmax�k gi�kÿ j� kmax� 1 �10�

k @yNp

@aimj
kmax�Md :

1
1ÿMd :S

: �11�

where

Md � max k @gi�k�
@x0im�k�

k�
���
2
p

s
:eÿ

1
2 �12�
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and the following condition also has to be observed:

Md <
1
S
: �13�

Thus the maximum value of the learning factor is:

0 < a <
1

2NR� 2NS
Md

1ÿ S:Md

� �2 : �14�

It should be pointed out that this equation is valid only when using the neural
network in isolation, for example when identifying a given dynamic process. As will
be seen in the following sections, if it is used as a neurocontroller, the relevant
adjustments need to be made to allow for the effect of the plant dynamics.

3. Neurocontrol of the Wheelchair

When using an inverse control system, in which the controller is a neural network,
the problem is how to propagate the control error to the adjustable coef¢cients
of the neurocontroller in such a way that the latter varies in the right direction,
so that the error is reduced. In short, the problem is how to obtain the sensitivity
of each plant output with respect to each input. This problem has been solved
in different ways: thus, [8, 13, 16], use a neuroidenti¢er in parallel with the physical
system to be controlled which serves as a path for the propagation of the error.
This neuroidenti¢er may be a recurrent neural network or a `feed-forward' network
with inputs of different moments of time. Zhang et al. [10] use only the sign produced
in each output when an input varies, as this information suf¢ces for evaluating in
which direction each of the neurocontroller's coef¢cients need to be adjusted. Acosta
et al. [17] calculate this sensitivity by ¢nding the relation between the plant input at
two consecutive moments of time and the output variation produced by said
variation, i.e.:

@y�k�
@u�k� �

y�k� ÿ y�kÿ 1�
u�kÿ 1� ÿ u�kÿ 2� : �15�

Another possibility is that used by [12], who obtains said sensitivity by increasing
each one of the neurocontroller's adjustable coef¢cients and making the correspond-
ing observation of the variations in each one of the outputs of the plant to be
controlled, thereby estimating the Jacobian of the plant.

In this paper a neuroidenti¢er in parallel with the wheelchair is used (Figure 2),
its mission being to propagate the control error to the neurocontroller, always
providing that the identi¢cation error is negligible. Both the neuroidenti¢er and
the neurocontroller are designed on the basis of the neural model explained in
point 2 (Neural Model).

USING A NEW MODEL OF RECURRENT NEURAL NETWORK FOR CONTROL 105



3.1. CHARACTERISTICS OF THE WHEELCHAIR

The wheelchair used in the practical tests, is a commercial model which has been
equipped with a sensorial system (ultrasound sensors, infrared sensing devices,
cameras, etc.) which facilitates its guidance. There are also different user-operated
control modes (joystick, vocal commands, air expulsion, eye movements) and
various user interfaces. The mechanical structure of the wheelchair consists of a
platform (measuring 100� 80� 58 cm, and weighing approximately 35 Kg) on
two motor wheels and two idle wheels. The motor wheels, with a radius Rd � 16
cm and separated by a distance D � 54 cm, have independent traction provided
by two DC motors.

There is a low-level control loop governing the electronic system of the DC
traction motors. This system is implemented with a PID and its mission is to ensure
that the turning speed of the right- and left-hand wheels (wR;wL) is approximately
that indicated on the electronic control cards (w0R;w

0
L):

w0R ' wR

w0L ' wL
�16�

Given that this control loop is not suf¢cient in itself to ensure reliability in the
wheelchair movements [14], another external loop is needed (neural control) to
govern adequately the linear speed (V �k�) and angular speed (O�k�) of the mobile
robot. This external control loop acts on the inputs of the PID controller (w0R;w

0
L).

3.2. CONTROL SCHEME

Figure 2 shows the classic model-oriented control structure, which uses a
neurocontroller (this generates the control signal (U(k)) on the basis of the reference
signals (Vd�k�, Od�k�), a reference model (with output Vm�k�, Od�k��, an adjustment
algorithm for minimizing the control error Ec�k� and the identi¢cation error
Ei�k� and a system for converting the angular speed of each one of the two wheels
to the linear and angular speeds of the wheelchair. The variables involved are:

Y�k� � V �k�
O�k�
� �

R�k� � Vd �k�
Od �k�
� �

U�k� � w0R�k�
w0L�k�
� �

Y i
N�k� �

yiN1�k�
yiN2�k�
� �

Ym�k� � Vm�k�
Om�k�
� �

: �17�

Where U�k� is the neurocontroller output and also the input of the plant and
neuroidenti¢er. The advantage of this set-up is that no assumption of the
wheelchair's dynamic is called for, so the same scheme can be valid for controlling
any other two-input, two-output system.
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In each working cycle (k), two functions must be minimized; the identi¢cation
error Ei�k� and the control error Ec�k�. The former is de¢ned as:

Ei�k� � 1
2
�yiN1�k� ÿ V �k��2 � 1

2
�yiN2�k� ÿ O�k��2; �18�

the superscript `i' indicates neuroidenti¢er coef¢cients. The neuroidenti¢er is
adjusted in each working cycle by means of (6) and (7), considering the linear speed
�V �k�� and angular speed �O�k�� of the wheelchair to be the desired network outputs.

The control error function to be minimized is the difference between the real
output of the plant (Y�k�) and the output given by the reference model:

Ec�k� � 1
2
�V �k� ÿ Vm�k��2 � 1

2
�O�k� ÿ Om�k��2: �19�

This error has to be propagated by the dynamic of wheelchair to the neurocontroller,
so that the latter's coef¢cients are adjusted by means of the equations:

Dwc
ipj�k� � ÿa:

@Ec�k�
@wc

ipj�k�
� ÿa:�ec1�k�:J11�k� � ec2�k�:J12�k��:

@w0r�k�
@wc

ipj�k�

ÿ a:�ec1�k�:J21�k� � ec2�k�:J22�k��:
@w0L�k�
@wc

ipj�k�
�20�

Dacimj�k� � ÿa:
@Ec�k�
@acimj�k�

� ÿa:�ec1�k�:J11�k� � ec2�k�:J12�k��:
@w0r�k�
@acimj�k�

ÿ a:�ec1�k�:J21�k� � ec2�k�:J22�k��:
@w0L�k�
@wc

imj�k�
�21�

Figure 2. Control system implemented.
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where

ec1�k� � �V �k� ÿ Vm�k��; ec2�k� � �O�k� ÿ Om�k�� �22�
and:

J11�k� J12�k�
J21�k� J22�k�
� �

�
@V
@w0R
�k� @O

@w0R
�k�

@V
@w0L
�k� @O

@w0L
�k�

2664
3775: �23�

When the identi¢cation error is negligible (Ei�k� � 0), each of the elements of (23)
can be obtained from the neuroidenti¢er model, according to the following equation:

Jmp�k� � ÿ2:
XNi

i�1

xim � x0iim ÿ Ci
im

si2
:wi

ip0:g
i
i�k�: �24�

3.3. STABILITY

Applying the result indicated by Equation (8) and considering the neurocontroller �
neuroidenti¢er unit to be a single neural network, so in each learning cycle the
coef¢cients of the neurocontroller and the neuroidenti¢er are adjusted, then, for
stability purposes, consideration has to be given to the following vector W

W � �wc
110; . . .wc

Nc2�Rcÿ1�; a
c
111; . . . aNc2Sc ;wi

110; . . .wi
Ni2�Riÿ1�; a

i
111; . . . aiNi2Si �T :

�25�
The number of elements of vector W is 2NcRc � 2NcSc � 2NiRi � 2NiSi, corre-
sponding to the neurocontroller and neuroidenti¢er respectively.

From the Equations (10) and (11):

k @y
i
Np

@wi
ipj
kmax�k gii�kÿ j� kmax� 1 �26�

k @y
i
Np

@aiimj
kmax�Mi

d :
1

1ÿMi
d :S

i
: �27�

To obtain the maximum variation of the neurocontroller coef¢cients, consideration
has to be given to the effect of the neuroidenti¢er, given by Equation (23):

k @y
i
N1

@wc
ipj
kmax�k Jp1�k� kmax�Mi

d :N
i �28�

k @y
i
N1

@acimj
kmax�Mc

d :
1

1ÿMc
d :S

c :2:M
i
d :N

i: �29�
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The following conditions need to be met:

Mc
d <

1
Sc ; k wc

ipj k< 1; Mi
d <

1
Si ; k wi

ipj k< 1: �30�

In short, the maximum value of the learning factor to be used in the control scheme
of Figure 2 is:

0 < a <
1

2NiRi � 2Ni:Si:
Mi

d
1ÿMi

d :S
i

� �2
�2NcRc�Mi

d :N
i�2 � 2Nc:Sc:

Mc
d

1ÿMi
d :S

c :2Mi
dN

i
� �2 :

�31�

4. Practical Trials

Three examples are shown of the wheelchair's behavior with the neural control
system: movement in a straight line at constant speed (Figure 3), movement in a
straight line with speed in triangular form (Figure 4) and an example (Figure 5)
in which the wheelchair describes a circular trajectory with a radius of 1 m.
(V � 37:7 m/s, O � 0:38 rd/s). In all the examples the coef¢cients of both the
neurocontroller and the neuroidenti¢er start from random values at the beginning

Figure 3. Advancing in a straight line.
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Figure 4. Linear speed in triangular form.

Figure 5. Tracing a circumference.
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of the sampling. The outcome therefore shows the time needed by the algorithm to
adapt to the working conditions. The following reference model has been used [3]:

Vm�k� � b:Vm�kÿ 1� � Vd�k�
Om�k� � b:Om�kÿ 1� � Od�k�
jbj � 0:7 < 1:

�32�

The con¢guration of the architecture used corresponds to the data shown in Table I
and the learning factor was a � 1=5800.

All the experiments were carried out with a person weighing about 50 kg sitting in
the wheelchair. The graphs show that the various speeds evolve smoothly and
without overshooting from initial to ¢nal values, although quicker responses can
be obtained in the transitory part of the bends by increasing the value of the learning
factor (a) or the number of neurons (Nc) or the number of adjustable parameters of
the neurocontroller (Sc;Rc), all this at the cost of system stability, as indicated
by Equation (31). For example Figure 6 shows an example in which the con¢guration
indicated in Table I has been used, but with Nc � 16, the above-mentioned effect
being quite noticeable.

Table I. Parameters of neuroidenti¢er and neurocontroller.

Neurocontroller
Neuroidenti¢er

Nc � 9
Ni � 9

Rc � 1
Ri � 2

Sc � 2
Si � 2

sc � 2:2
si � 2:2

Figure 6. Response with overshooting.
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5. Conclusions

This paper shows a practical case of controlling the movements of a real system (a
wheelchair) by means of a neural system using a new recurrent neural network archi-
tecture based on a RBF model. Equations have been obtained for the adjustment of
the coef¢cients (FIR ¢lters) and stability conditions for 2-output models. The system
was then tested in practice for guiding the movements of a wheelchair, whereby
several trials conducted under real working conditions have proven that it works
correctly.
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