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Abstract. This paper presents a global positioning system for an au-
tonomous electric vehicle based on a Real-Time Kinematic Global Navi-
gation Satellite System (RTK- GNSS), and an incremental-encoder odom-
etry system. Both elements are fused to a single system by an Extended
Kalman Filter (EKF), reaching centimeter accuracy. Some varied exper-
iments have been carried out in a real urban environment to compare
the performance of this positioning architectures separately and fused
together. The achieved aim was to provide autonomous vehicles with
centimeter precision on geolocalization to navigate through a real lane
net.

Keywords: autonomous vehicle, positioning, odometry, multi-GNSS,
Kalman Filter

1 Introduction

Vehicle positioning and tracking have numerous applications in general transport-
related studies including vehicle navigation, fleet monitoring, traffic congestion
etc. In the last decade, many works have been focused in studying driving be-
haviour through examining the vehicle movement trajectory using GNSS signals,
mostly GPS [1] [2] [3]. These methods have been able to provide both geolocal-
ization and time information to a receiver employing multiple satellite signals
while they stay fast, accurate, and cost-efficient. However, their performance
has a strong dependence on several system factors such as the number of visible
satellites, their positions or the capability of the GPS receiver. In addition, the
signal trips through the layers of the atmosphere, and some other sources con-
tribute to inaccuracies and errors in the GPS signals by the time they reach a
receiver. Thus, the accuracy provided by this methods is low (usually between 1
and 10 meters), they need a considerable time (over 30 seconds) to provide the
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first position measurement and they do not guarantee a robust service in several
situations such as environments with poor signal conditions.

The development of Intelligent Vehicles (IVs) has specially grown during the
last years. These systems aim to solve complex issues with specially demanding
accuracy requirements (usually decimeter precision) like autonomous driving
applications where tasks such as lane maintenance analysis demand centimeter
precision [4]. Furthermore, autonomous vehicles also require robust solutions
with low latencies and high time availability so standalone GNSS techniques are
not adequate for them.

Various solutions are proposed to achieve a better service quality: to deal with
the accuracy problem Differential GPS (DGPS) is used to obtain an accuracy
enhancement using data from a reference station [5] [6] and the more complex
Real-time Kinematic (RTK) positioning solution, which uses carrier phase infor-
mation, has attracted much interest in applications with strict precision require-
ments due to its centimeter-level accuracy [7]. To approach the robustness issue
Multi-GNSS (multiple Global Navigation Satellite Systems) techniques are being
widely-used, boosted by the appearance of alternative GNSSs based on differ-
ent satellite constellations like Russian (GLONASS), European Union (Galileo),
Chinese (Beidou) or Japanese (QZSS). Multi-GNSS allows to easily increase the
number of tracked satellites to over 10 in good signal conditions and to more
than 5 in almost any other situation, even including dense urban areas combining
multiple GNSS [4]. Several studies have proven the benefits of these techniques
combining GPS and GLONASS [8] [9], GPS and Galileo [10] or even four of the
available systems (GPS+Galileo+BeiDou+QZSS) [11].

Nevertheless, even the combination of the previous methods might not be
enough to cover autonomous vehicles needs in certain environments such as dense
urban or concrete places like tunnels. To face this challenging situations, GNSS
data needs to be fused with local sensors information when the measurement’s
quality is degraded. In [12] RTK-DGPS was fused with speed vehicle sensors and
steering-wheel position measurements to improve vehicle tracking. Other works
like [13] used an Extended Kalman Filter to integrate DGPS with some vehicle
sensors like an inertial navigation system (INS) through a kinematic model in
order to achieve enough accuracy to enable vehicle cooperative collision warning
without the use of ranging sensors.

This paper presents a robust real-time positioning system for autonomous ve-
hicles that reaches centimeter precision. The system uses a GNSS receiver and an
incremental-encoder odometry, integrated by an Extended Kalman Filter which
leverages quality of the received satellite measurements. As well as, odometry
system is calibrated through an automatic process applying a least square ad-
justment of the position error of a variety of routes. Experiments presented in
Section 4 show that our system is able to keep the vehicle in the middle of the
lane nets even in regions without available differential corrections. Furthermore,
the system is complemented with a reactive navigation module based on vision
and Lidar that slightly relaxes the positioning requirements.
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This paper is organized as follows: section 2 presents the system’s structure
together with an analysis of the main modules that compose it and their cor-
responding standalone performances. Section 3 analyzes the integration of both
modules using the Extended Kalman Filter and the following section 4 exposes
the results of the performed experiments to test the final system with differ-
ent configurations. Last section 5 presents the final conclusions and future work
lines.

2 System Architecture

The positioning system is integrated in an open-source electric vehicle (TABBY
EVO Vehicle 4 seats version) modified and automatized by the University of
Alcala. The system’s architecture includes a Real-Time Kinematic Multi-Global
Navigation Satellite System based on both GPS and GLONASS with a local
base station that broadcasts differential corrections, a GPRS modem, and an
incremental-encoder odometry system. Its sensor equipment is composed of a
GNSS receiver, a Choke-Ring Antenna for the local base station, and two Kiibler
3700 incremental encoders for odometry. All these modules are fused in Robotic
Operating System (ROS) using an Extended Kalman Filter. Figure 1 shows the
general diagram of the system.
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Fig. 1. System Architecture Diagram

GNSS receiver is set on top of the vehicle to obtain maximum coverage,
and Choke-Ring Antenna for a base station is set on the Polytechnic School
building’s roof. The odometry encoders are assembled in both rear-wheel shafts
by 3D-printed pieces. ROS runs on two embedded GPUs looking for the benefits
of modularity. These GPUs are a Nvidia Jetson TX2, and a Raspberry Pi 3
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for odometry processing. Figure 2 displays the entire vehicle, and Figure 3(a)
(where Lidar is shown as part of reactive navigation system) and Figure 3(b)
show GNSS receiver and odometry encoder details.

(b) Incremental encoder

Fig. 3. Vehicle sensor equipment

2.1 Multi-GNSS

The main module of the localization system consists of a multi-constellation
system (multi-GNSS) with RTK positioning solution. In addition, it also includes
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two elements: a differential Hiper Pro GPS+ receiver configured as rover, and a
local base station to generate differential corrections.

The rover is able to obtain data from both GLONASS and GPS to provide a
more robust solution than a standard GPS by increasing the number of visible
satellites. It provides positioning information at 10 Hz as autonomous vehicles
demand real-time information. Furthermore, it uses differential corrections to
improve the achieved accuracy.

The Standard National Geographic Institute of Spain (IGN) public reference
station’s frequency is usually below 1 Hz which is inadequate for kinematic appli-
cations. In addition, the published data only allows positioning sub-meter level
accuracies when the rover is within a short distance from the station. To achieve
the needed requirements a local base station was deployed on the Polytechnic
School building’s roof.

The local base station uses a Choke-Ring Antenna, specifically chosen to
deal with multipath. The Antenna is connected to a second Hiper Pro GPS +
receiver which generates the differential corrections. Corrections are generated
at 10 Hz, published over the Internet using standard Open Source software, and
then acquired by the car using a GPRS modem linked via radio.

The GNSS module (base station + rover) was tested separately to evaluate
the accuracy it was able to provide. In the first trial, the receiver was tested on
standalone mode without adding corrections. To perform the trial an hour of
data was recorded on another base station with a known position. The results
were then compared with the real station position. Figure 4 shows the results
of the experiment. The first graphic, figure 4(a), represents the deviation of the
measurements from the real antenna position in meters. The second figure 4(b)
represents the RMS error of the measurements (m) as a function of the GPS
time.
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Fig. 4. GPS+GLONASS performance for standalone receiver
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The presented results clearly show that standalone system is not enough for
autonomous vehicle applications. With a mean measurement value of 71 cm, the
graphs expose the system only provides sub-meter accuracy 72% of the time and
for 95% it can only ensure an accuracy of 1.7 meters. Besides, the tested system
clearly shows a considerable lack of repeatability when it is analyzed from one
day to another.

In a second trial, differential corrections were added to the receiver and the
first test was repeated the same day with similar conditions. Another hour of
data was recorded after the ambiguity resolution process, in the receiver, and was
completed in order to achieve the best accuracy with the Fixed-RTK solution.
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Fig. 5. GPS+GLONASS performance for differential receiver with Fixed-RTK

Figure 5 shows the enhancement that corrections offer: the mean measure-
ment error value is reduced to 1.3 cm with a max deviation of 3.4 cm. The system
guarantees centimeter precision 100% of the time and it becomes repeatable if
tested on independent days.

Ambiguity resolution process (required to fix the number of wavelengths be-
tween satellites and base station, and therefore it provides the optimum solution)
is another important issue in the system’s performance. Without a fixed solution
the accuracy is clearly downgraded. Achieving a fixed-RTK solution takes a long
time and it may even be unreachable due to poor satellite visibility. Figure 6
presents the required time to achieve the optimum solution based on collected
data during a period of time of two months in favorable conditions (open sky).

The results in figure 6 show that the mean required time (50%) to achieve con-
vergence is over 9 minutes. Furthermore, about 10% of the measurements needed
more than 15 minutes to reach centimeter accuracy even with good satellite sig-
nal conditions. The convergence time highlights the need to use complementary
systems that improve the main module precision when a Fixed solution is not
available.
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Fig. 6. Convergence time for RTK-Fixed solution.

2.2 Incremental-Encoder Odometry

The implemented odometry system is based on incremental encoders which mea-
sure the rear wheels’ rotation. Each wheel has its own shaft, which allows the
rotation angle of the vehicle to be measured. This odometry system provides the
angular and linear velocity of the vehicle to the Extended Kalman Filter.

The relative position and angle are not given to the filter because of cumula-
tive error. Some external causes, such as the irregularity of the road, add error
to the measurement each sampling period. The cumulative error is removed by
giving instant velocities.

This odometry system is composed of two main modules: a real-time pulse
counter, and an algorithm processor. The capturing of pulses is a critical task
since missing them implicates losing control of the measurement, and a system-
atic error. An Olimexino-STM32 is in charge of the counter. Then, the calcula-
tions of lineal and angular velocities are performed by a Raspberry Pi 3. This
task uses the time between each interaction given by the pulse counter to carry
out the calculations of the velocities. These two modules communicate each other
through serial-communication protocol.

The calculations of lineal and angular velocities are referenced to the central
point between rear wheels, following an Ackerman model [14] as shown in figure
7.

The lineal velocity Vg.rg is obtained by equation 1 as an average of the two
lineal velocities of the wheels, where as Vg is the velocity of the right wheel and
V1, is the velocity of the left.

Ve + Vg,
Viury = e )
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Fig. 7. Vehicle diagram - Ackerman steering geometry

Both independent velocities of each wheel are calculated as

o NRDRTF
Ve =T @
and N.D
_ NpDpm
Vi = T (3)
where:

Npg number of pulses of the right wheel

N;, number of pulses of the left wheel

Dp diameter of the right wheel

D, diameter of the left wheel

P encoder resolution (in pulses per revolution of the wheel)

T time between each interaction of calculations

Angular velocity wgyrg is obtained by equation 4 as a lineal derivation of
the developed rotation angle 6 in each interaction of calculations. This angle is
calculated as equation 5.

0
Wavrg = T (4)

(NrDgr — NpDp)m
bP

where b is the distance between the rear wheels.

The angle is calculated in this manner as a consequence of the fact the model
of the vehicle is based on the Ackerman steering geometry (Figure 7), which
implies that every movement is a circular curve. Although this model is only
kinematic, it is a appropriate for low velocities [15].

To calibrate the odometry parameters we implemented an automatic process
that analyzes different routes to eliminate systematic errors in the calculated
position. These errors come from variations in the diameter of the wheels, and
the real distance between the wheels. In the performed routes, the position tracks
are analyzed, and therefore the calibration process is able to obtain the real
odometry parameters Dg, Dy, and b using a least squares adjustment of the
position error at the end of the routes.

0=

()
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In order to calibrate the parameters, first, a straight movement has to be
analyzed to obtain the real dimensions of the wheels to find the minimum error.
Figure 8(a) shows the surface of error in one test, which has a minimum at
Dr=>560.4 mm and Dy;=>558 mm. The reasoning behind using a straight route
comes from the fact that no turn is made, meaning the distance between wheels
b does not interact.

Then, using the calculated dimensions of the wheels, a complex route is ana-
lyzed to establish the distance between wheels. The results of the final position
error are shown in figure 8(b), with a minimum at b=1404 mm. Finally, figure
9(a) shows the complex route using the nominal value of b (1350 mm), and figure
9(b) shows the same route using the calibrated value of b (1404 mm).

=
N
o

o
e [=2] 0] o
o o o o

N
o

RMSE of the Final Position (m)
RMSE of the Final Position (m)

570

560
0 \ ‘
D, (mm) 550 550 Dy (mm) 1300 1350 1400 1450 1500

L Distance Between Wheels (mm)

(a) Diameter Calibration Surface (b) Calibration of parameter b

Fig. 8. Odometry Calibration
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Fig. 9. Complex Route Results
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3 Extended Kalman Filter

Standard EKF algorithm and formulation are widely known [16]. To obtain the
output of EKF measurement covariance matrices associated with localization
sensors are employed. Originally, the raw covariance matrices provided by the
sensors were used. However, these matrices only considered certain quality in-
dicators, which were insufficient for the application requirements. For example,
the used GNSS receiver only considers some parameters (such as HDOP) but
does not leverage the usage of differential corrections, which provide reliable
information about measurement accuracy.

Thus, we propose an adaptive filter in accordance with every available quality
parameter in order to adapt the output of the filter to the real environment
conditions.

3.1 Algorithm

The developed EKF aims to estimate the full 3D pose and velocity of the vehicle
over time using the information provided by the previously discussed sensors.
The vehicles system state is a six-element vector that comprises the vehicles
3D orientation and velocity. It is calculated as equation 6 where f represents
nonlinear state transition function and wy_; is the process noise.

v = f(r_1) + wi—1 (6)
In addition, each employed sensor provides measurements that are modeled as
T

2k = h(xk) + Vg (7)

where h is a nonlinear state transition sensor function and vy, is the measurements
noise which is assumed to be normally distributed.

The prediction stage is described by equations 8 and 9 where a standard

3D kinematic model as product of Newtonian mechanics is used as f. F' is the

Jacobian of f which is used to project the covariance error P, and finally, @ is
the processed noise covariance.

&= f(zr-1) (8)
P, =FP,_PT+Q 9)

The correction stage is carried out through equations 10, 11 and 12. The first
one calculates the Kalman gain using the sensors measurement matrix H, the
measurement covariance, and the estimated error covariance Pk The gain is
employed to update the final state vector and the covariance matrix.

K =PH'(HP.HT + R)™* (10)

xk:fk—I—K(z—ka) (11)
P, = (I —KH)P,(I — KH)" + KRK” (12)
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The measurement covariance matrices provided by the sensors are adjusted
following the GNSS receiver quality indicators: fix quality and Horizontal Di-
lution of Precision (HDOP). During the first step, the covariance matrices are
modified according to fix quality. For a fix quality of 4, the main sensor achieves
centimeter precision so matrices are configured to strongly prioritize its infor-
mation. However, with fix quality of 5, the GNSS receiver has not completed
ambiguity resolution process (obtained accuracy is sub-metric), therefore the
covariance matrices are adjusted using a linear function dependent on HDOP.
Finally, for a fix quality of 1, the GNSS receiver covariance matrix is penalized
in benefit of odometry. As it does not provide accurate data, that matrix is
adjusted with a linear function as fix quality 5 case.

4 Results

To test the localization system, an area around the UAH campus in Madrid was
chosen with approximately 4 km radius distance to the differential corrections
base-station, enabling high quality corrections. The test route presented a length
of about 5,5 km with both two lane and four lane roads involving challenging
tasks for autonomous vehicles such as pedestrian crossings, roundabouts, and
stop and give way signs. Additionally, the route has been performed between
20 to 30 kilometers per hour, including defiant conditions for the GNSS signals
(trees, high buildings, street signing, electrical lines, etc).

Below we present results of a sample of stretches in the tested routes, showing
different configurations and the performance of the system dealing with real-life,
challenging situations. In all the figures, the blue trail is the route determined
by the GNSS receiver, the yellow one is the path determined by odometry, and
the red one is the EKF output.

Figure 10 presents the data collected by sensors along the main section of the
route. GNSS receiver achieved the RTK Fix solution during most of the path,
but corrections were lost several times due to multipath. The exposed odometry
data did not include a calibration process, as it can clearly been observed, but
even without the adjustment the output of the system still acts robustly, even
under unfavorable conditions. Figure 11 shows the adaptive EKF output for the
previous route.

Figure 12 presents different details of the sections (output EKF in red and
GNSS output in blue dots) where GNSS signals are degraded by multipath
faced by three different system configurations. Figure 12(a) demonstrates the
performance of the positioning system without the adaptive Kalman. The re-
sults clearly show that basic configuration (with sensor raw covariance matrices)
strongly depends on the main module performance and fails when GNSS sig-
nals are degraded or lost. Figure 12(b) shows the same section for an adaptive
Kalman without a RTK solution available. The performance of the system is
clearly improved, even in worse GNSS signal conditions, however the system is
still not able to maintain the vehicle between lanes. Figure 12(c) presents the
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Fig. 10. GNSS standalone fix 1 (blue) and Odometry (yellow)

Fig. 11. Adapted EKF output
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performance of the final system with the adaptive Kalman and a RTK position-
ing solution, which responds correctly to GNSS signal quality degradation.

(a)  Non-adaptive (b) Adaptive EKF (c) Adaptive EKF

EKF output output with stan- output with RTK
dalone GNSS fixed solution

Fig. 12. Adaptive EKF Robustness Example

Figure 13(a) shows the output of the system in a roundabout for a standalone
GNSS solution with calibrated odometry and figure 13(b) shows EKF output
(red trail) just using odometry information. The performance of the odometry is
penalized by sharp turns, so roundabouts are challenging environments for the
positioning system if the main module is not able to achieve centimeter accuracy.
However, the presented results display the capability of the system to respond
properly to this challenging condition.

5 Conclusion

This paper presents an accurate and robust positioning system specifically de-
signed for a fully autonomous vehicle which achieves centimeter precision, even
in disadvantageous environments. This positioning system is finally used by a
real autonomous vehicle to drive through a lane net, and consequently, in a real
urban environment.

The exhibited tests show various potential configurations for the system,
which demonstrate the need to use the proposed adaptive EKF in order to
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(a) Adaptive EKF output (b) Odometry trial output
with standalone GNSS without EKF

Fig. 13. Improvement over Standalone Odometry Configuration

correctly handle poor sensor performance situations. The importance of using
this adaptive EKF lies in the fact that lanes are just a couple meters width. This
means, while using standalone GNSS (fix 1 quality) with an non-adaptive EKF,
that one meter of error in GNSS receiver positioning could cause a collision.

Future work involves the integration of additional sensors such as a compass
and some IMUs to detect possible skids at high velocities, the adaptation of the
EKF to more defined, alternative environments such as dense, urban ones, and
the readjust of covariance matrix adaptation of all sensors considering the new
ones (compass and IMUs). In addition to this, to improve the odometry in real
time while driving, the calibration process will be implemented on board using
a variety of stretches as test routes when GNSS receiver has Fixed quality.
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