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Abstract. This work presents the validation of our fully-autonomous driving ar-
chitecture in the CARLA open-source simulator, by using some challenging driv-
ing scenarios inspired on the CARLA Autonomous Driving Challenge (CADC),
focusing on our decision-making layer, based on Hierarchical Interpreted Binary
Petri Nets (HIBPN). First, our ROS (Robot Operating System) based autonomous
driving architecture is introduced. Second, the CARLA simulator is described,
outlining the steps conducted to merge our architecture with this simulator and
the advantages to create ad-hoc driving scenarios for use cases validation. Fi-
nally, the paper validates the architecture by means of some challenging driving
scenarios such as: STOP, Pedestrian Crossing, Adaptive Cruise Control (ACC)
and Unexpected Pedestrian. Some qualitative (video files) and quantitative (tra-
jectory and linear velocity segmented with its corresponding Petri Net states)
results are presented for each use case, validating our architecture in simulation
as a preliminary stage before implementing it in our real autonomous electric car.

Keywords: CARLA, Autonomous Vehicles, ROS, Simulation, Decision-Making,
Use Cases

1 INTRODUCTION

Autonomous vehicles (AV) is one of the most challenging engineering tasks of our era.
These AVs are expected to be driven throughout a highly dynamic environment with a
reliability greater than human beings and full autonomy. In order to perform this task,
an AV must be equipped with robust algorithms and multiple sensors in such a way
the vehicle is able to perceive the surrounding environment in real-time with a high
precision, estimating the position of the objects with a very low error in the 3D/BEV
(Bird’s Eye View) space. However, making use of the object detection alone is not good
enough for an AV to navigate in such complex environments, but the vehicle must also
be able to track these obstacles along the scene to estimate their velocity and predict
their future positions, also known as scene prediction. In that sense, the perception
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layer of an intelligent vehicle can be divided into three sequential stages: Detection,
Multi-Object Tracking and Scene Prediction stage. The perception layer, based on the
combination of different perception sensors and tracking algorithms, must be able to
provide the most probable future behaviours, velocity and position of the main objects
in the scene. This, combined with the control and mapping/planning layer information,
feeds the decision-making layer of the ego-vehicle in order to successfully conduct
some common urban use cases such as predicting if a pedestrian will start to cross a
certain pedestrian crossing, predict the presence of an adversary vehicle in the next
give-way or even when the ego-vehicle is carrying out the Adaptive Cruise Control
(ACC), where it must adjust the vehicle speed to maintain a safe distance from ahead

vehicles.
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Fig. 1. Our autonomous driving architecture under CARLA simulation. GUI = Graphical User
Interface; HW = Hardware; RG = RoboGraph; GPS = Global Positioning System; ROS = Robot
Operating System; LiDAR = Light Detection and Ranging; IPC = Inter-Process Communication

In spite of all impressive efforts in the development of autonomous driving technol-
ogy [1], fully-autonomous navigation in arbitrarily complex environments is still years
away. The reason for this is two-fold: Firstly, informed decision-making requires ac-
curate perception. Most of the existing perception systems produce errors at a rate not
acceptable for autonomous driving [2]. Secondly, autonomous systems that are oper-
ated in complex dynamic environments require intelligent systems that generalizes to
unpredictable situations in a timely manner.
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An AV must be able to carry out driving decisions based on the offline and on-
line information processed by the vehicle. In that sense, the offline information can be
identified as the prior knowledge of the system, such as the topological relations and
geographic information of the environment based on high-definition maps [3], the ve-
hicle dynamic and the traffic rules based on behavioural decision-making systems [4].
On the other hand, the online information, also known as the traffic situation, is ob-
tained through the global perception system of the vehicle, which involves different
on-board sensors (like Inertial Measurement Unit (IMU)), Light Detection and Rang-
ing (LiDAR), Global Positioning System (GPS), Steering wheel angle and Cameras).
Traditionally, autonomous driving systems break down hierarchically into four main
components [5]: Route Planning, Executive Layer, Motion Planning and Vehicle Con-
trol.

The scope of this paper is the evaluation of our ROS based fully-autonomous driv-
ing architecture (Agent Docker in Fig. 1), focusing on the behavioural decision-making
layer, in the context of some challenging driving scenarios inspired in the CARLA [6]
Autonomous Driving Challenge. This work is the continuation of our previous valida-
tion carried out in a more limited simulator (V-REP [7]). The validation with CARLA,
a novel open-source autonomous driving simulator, featured by its flexibility, hyper-
realism and real-time working, reinforces the simulation design stage. We hope that our
distributed system can serve as a solid baseline on which future research can build on to
advance the state-of-the-art in validating fully-autonomous driving architectures using
hyper-realistic simulation, as a preliminary stage before implementing the architecture
in our real electric car prototype.

The remaining content of this work is organized as follows. The next section presents
the work related to this research, focused on the decision-making layer and the impor-
tance of simulation in the context of AV. Section 3 presents our autonomous navigation
architecture. Section 4 describes the main features of the CARLA simulator, its inte-
gration with out AV architecture, regarding the way in which the sensors perceive the
environment and how this information is processed to feed the decision-making sys-
tem, including both the traffic situation and prior knowledge. Section 5 describes some
interesting use cases, including a table with their main features, giving rise to some
quantitative and qualitative results to illustrate the proposed architecture performance.
Finally, section 6 deals with the future works and concludes the work.

2 RELATED WORKS

As mentioned in the previous section, a fully-autonomous driving architecture (L5 in
the J3016 SA [8]) is still years away, mainly due to technical challenges, but also due
to social and legal ones [9].

No industry organization has shown a ratified testing methodology for L4/L5 au-
tonomous vehicles. The autonomous driving community gives a simple reason: al-
though some regulations have been defined for these L4/L5 levels, simulation is critical
to build safe AV. However, despite the fact that current automotive companies are very
good at testing the individual components of the autonomous driving architecture, there
is a need to test intelligent vehicles full of advanced sensors [10] and sharing informa-
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tion among them. In this context, artificial intelligence is increasingly being involved
in processes such as detecting the most relevant objects around the car (deep learning
based multi-object tracking systems), or evaluating the current situation of the vehicle
to conduct the safest decision (e.g. deep reinforcement learning applied to behavioural
systems). Moreover, it is important to consider the presence of sensor redundancy in
order to reach safe navigation in such a way that the different sensors and associated
algorithms must be integrated together, required to validate the whole system, not just
the individual components.

Regarding urban environment complexity, the system must be tested in countless
environments and scenarios, which would escalate the cost and development time ex-
ponentially with the physical approach. Regarding this, the use of photo-realistic sim-
ulation (virtual development and validation testing) and an appropriate design of the
driving scenarios are the current keys to build safe and robust AV. We propose the use
of CARLA as the best open-source tool to reach these goals.

On the other hand, behavioural decision-making layer must provide tools to model
the sequence of events and action, based on some predefined traffic rules, that can take
place in the different traffic scenarios. In terms of AV, different approaches have been
proposed to design the decision-making layer, including different heuristic solutions
[11] based on identifying a set of driving scenarios or driving contexts (e.g. intersection
handling or lane driving), reducing the number of environmental features to which the
vehicle must be focused, according to each driving context.

The design of the decision-making layer for AV is challenging due to uncertainty
in the knowledge about the driving situation and the state of the vehicle. This uncer-
tainty comes from different sources, such as the estimation of the continuous state of
nearby external agents, like other vehicles or pedestrians, whose behaviour is usually
unpredictable. Hence, in order to design an optimal decision system uncertainty must
be considered. Despite the fact that Partially Observable Markov Decision Processes
(POMDP) [12] offer a framework to manage uncertainty, they are not scalable to real-
world scenarios because of the associated complexity. Other approaches tackle this
layer using simple discrete events systems, which are not enough complex to model
real-world driving scenarios. Decision Trees (DT) [13], Hierarchical Finite-State Ma-
chines (HFSM) [14] and Finite-State Machines (FSM) [15] are among the most popular
approaches to design a decision making system. Moreover, several teams [4] in the De-
fense Advanced Research Projects Agency (DARPA) Urban Challenge [16] used some
of these approaches.

Nevertheless, for complex problems in which common urban driving scenarios are
included, the difficulty in representing the system as FSM lies in dealing with the need
to implement the potentially high number of transitions due to the state explosion prob-
lem. Behaviours Trees (BT) can get rid of these drawbacks since the transitions among
the states are implicit to their control structure formulated as a tree, giving rise to a
higher flexibility, maintainability and extensibility with respect to FSMs.

However, BTs and simple discrete event systems share a common problem: A naive
implementation usually gives rise to blocking behaviour, which make them unsuitable
for autonomous driving. In that sense, concurrency and parallel activities can be easily
programmed using Petri Nets (PN). PNs are a powerful tool to design, model and ana-
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lyze concurrent, sequential and distributed systems. While in a FSM there is always a
single current state, in PNs there may be several states that can change the state of the
PN. In particular, in this work we model every behaviour as Hierarchical Interpreted
Binary Petri Net (HIBPN) [17] [7], as shown in Fig. 2(b), where a PN can start/stop
another PN depending on its hierarchy.

3 AUTONOMOUS NAVIGATION ARCHITECTURE

Our autonomous navigation framework (Fig. 1) is featured by a modular architecture
where individual modules process the information in an asynchronous way. These mod-
ules are standalone processes that communicate each other using the ROS Inter-Process
Communication (IPC) system. The publish/subscribe concept is used to provide non-
blocking communications. These software modules are organized in four layers as fol-
lowing:

— Hardware drivers layer Set of programs that implements different hardware de-
vices, such as sensors and actuators.

— Control layer Set of programs that implements the vehicle control and navigation
functionality. These programs include the path planning (map manager), localiza-
tion, reactive control (local navigator) and a program to process most of the per-
ception sensors to detect and track relevant events (event monitor).

— Executive layer Set of programs that coordinates the sequence of actions required
to be executed to perform the current behaviour.

— Interface layer Set of processes that interact with the user and enable the commu-
nication to other processes for multi-robot applications.

The motion control is broken down into lower-level (LL) reactive control and high-
level (HL) planning. First of all, the map manager (control layer) loads the map made up
by a sequence of lanelets [ | 8], in which the user must specify the start and goal position
of the route. Then, the lanelet path is generated using an A* algorithm [19]. Besides
this, the map manager serves other queries from other modules related to the map. For
example, it must provide the most relevant lanes around the vehicle, such as intersection
lanes or contiguous lanes for stop and overtaking use cases respectively, or providing the
position of the regulatory elements in the route. Finally, a global path planner calculates
a suitable path to be followed by the car. The goal of the local navigation module is to
safely follow this path, keeping the vehicle within the driving lane and modifying the
vehicle dynamic when was required by the behaviour constraints established by the HL.
planning. In order to do that, the local navigation system calculates the curvature to
guide the car from its current position to a look-at-head position placed in the center of
the lane using the Pure Pursuit algorithm [20]. This curvature is used as the reference
for the reactive control, where an obstacle avoidance method is implemented based on
the Beam Curvature Method (BCM) [21]. Combining both the Pure Pursuit algorithm
and BCM, the local navigation system keep the vehicle centered in the driving lane
while is able to avoid unknown obstacles which can partially block the lane.

In terms of environment perception, we perform a sensor fusion [7] between LiDAR
and camera in order to detect and track the most relevant objects in the scene. First, a
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Fig. 2. (a) Simulation example: On the left, the CARLA simulator illustrates the urban scenario
our sensors face. On the right, the RVIZ simulator shows the detection in the coloured point
cloud. (b) Start Petri Net of our behaviour decision-making system .

semantic segmentation is performed in the RGB image taken from the camera to de-
tect the different obstacles and the driving area. In our real-world vehicle, we use our
Efficient Residual Factorized ConvNet (ERFNet) [22] for real-time semantic segmen-
tation, while in simulation, CARLA already provides a sensor including the semantic
segmentation of the scene. We merge the 3D LiDAR point cloud and the 2D segmented
pixels so as to obtain a coloured point cloud, where the points out of the FoV of the
camera are not coloured. Then, we carry out a coloring clustering, obtaining the most
relevant objects in the scene, as shown in Fig. 2(a). Multi-Object Tracking is performed
by combining the Precision Tracker approach [23], BEV Kalman Filter [24] and Near-
est Neighbour algorithm [25]. All this local perception information is published through
the event monitor module.

The behavioural decision-making has been implemented using HIBPNs, where the
main Petri Net is fed with the inputs provided by the local perception (event monitor
module), the vehicle odometry in the map and the map manager information. To imple-
ment these HIBPNs, we use the RoboGraph tool [4], employed by the authors in other
mobile robot applications.
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4 SIMULATION STAGE

As commented in previous sections, virtual testing is becoming increasingly importance
in terms of AV. Since the urban environment is highly complex, the navigation architec-
ture must be tested in countless environments and scenarios, which would escalate the
cost and development time exponentially with the physical approach. Some of the most
used simulators in the field of AV are Microsoft Airsim [26], recently updated to include
AV although it was initially designed for drones, NVIDIA DRIVE PX [27], aimed at
providing AV and driver assistance functionality powered by deep learning, ROS de-
velopment studio [28], fully based on the Cloud concept where a cluster of computers
allows the parallel simulation of as many vehicles as required, V-REP [29], with an
easy integration with ROS and a countless number of vehicles and dynamic parameters
and CARLA [6], which is the newest open-source simulator for AV based on Unreal
engine. In [30], [7] we validated the proposed navigation architecture using the V-REP
simulator cause our previous experience in this simulator. However, the paradigms of
real-time and high realism could not be deeply analysed due to V-REP is not designed
to create high realistic urban driving scenarios, so the analysis of traffic use cases is
hard due to the unrealism and slowness of the simulator environment. Since our project
is characterized by being open-source, we decided to integrate our autonomous driving
architecture with the open-source CARLA simulator. This offers a much more inter-
esting environment in terms of traffic scenarios, perception, real-time and flexibility,
which are key concepts for our algorithms. In this work we have used the 0.9.6 ver-
sion of CARLA, so the CARLA ROS bridge and the Scenario Runner. Additional tools
needed for the simulation, were configured according to this version.

In [7] we used the simulation environment, the V-REP ROS bridge and the au-
tonomous navigation architecture in the same host machine, running on Ubuntu 16.04.
For this work, we decided to split them into two Ubuntu 18.04 Docker [3 1] images, the
CARLA world and the CARLA ROS bridge in one image and the autonomous naviga-
tion architecture in the other one, so as improve the portability, flexibility and isolation
of our work.

4.1 Environment

CARLA is implemented as an open-source layer over Unreal Engine 4 (UE4) [32]. This
simulation engine provides CARLA an hyper-realistic physics and an ecosystem of in-
teroperable plugins. In that sense, CARLA simulates a dynamic world and provides a
simple interface between an agent that interacts with the world and itself. In order to
support this functionality, CARLA was designed as a server-client system, where the
simulation is run and rendered by the server. CARLA environment is made up by 3D
models of static objects like infrastructure, buildings or vegetation, as well as dynamic
objects such as vehicles, cyclists or pedestrians. They are designed using low-weight
geometric models and textures but maintaining visual realism due to a variable level
of detail and carefully crafting the materials. On the other hand, the maps provided by
CARLA are in OpenDrive [33] format, whilst we use the lanelet approach based on
OpenStreetMap (OSM) [34] service. We transform the OpenDrive format into OSM
format by using the converter proposed by [35]. Then, based on this lanelet map, we
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manually include the regulatory traffic information to generate an enriched topological
map useful for navigation. Furthermore, the OSM map uses WGS84 coordinates (lati-
tude, longitude and height) whilst the simulator provides Cartesian coordinates (UTM)
relative to an origin (usually the center of the map). Then, geometric transformations be-
tween both systems are calculated using the libraries implemented in the ROS geodesy
package.

Table 1. Summary of the main features, including inputs, outputs and involved modules, for the
main Petri Nets of our work. MM = Map Manager; EM = Event Monitor; LN = Local Navigator;
RGD = RoboGraph Dispatch; PC = Pedestrian Crossing

Petri Inputs Input Outputs Output || Nodes/
Net modules modules || Transitions
Background Man/auto GUI User Run Selector RGD 8/9
goToPoint GUI User Stop selector RGD
Selector PN Reg. Element MM Run PC RGD 21/29
Dist. Reg Element|| MM Stop PC RGD
End Reg. Element|| MM Run GiveWay RGD
Reg. Element EM Stop GiveWay RGD
End Reg. Element EM Run STOP RGD
FrontCarVel EM
Odom Base
Pedestrian NoPedestrian EM WatchforPedetrians|| EM 10/13
Crossing Pedestrian EM SetMax Vel LN
Dist. To PC MM StopAtPoint LN
PC Over MM
Force End RGD
Stopped LN
STOP SafetoMerge EM CheckSafeMerge EM 9/12
NotSafetoMerge EM SetMax Vel LN
DistToStop MM StopAtPoint LN
StopOver MM
Force End RGD
Stopped LN
Adaptive Current Velocity MM SetMax Vel LN 4/6
Cruise FrontCarVel EM
Control (ACC)|| DistToFrontCar MM

4.2 Vehicle

In order to link the vehicle in CARLA and its corresponding model in RVIZ (Fig. 2(a)),
we modify the ROS bridge associated to the CARLA simulator. The CARLA ROS
bridge is a ROS package that aims at providing a bridge between CARLA and ROS,
being able to send the data captured by the on-board sensors and other variables asso-
ciated to the vehicle in the form of topics and parameters understood by ROS. In that
sense, we modify some parameters of the speed and acceleration PID, the sensors posi-
tion and orientation, the Ackermann control node and the waypoint publisher to adjust
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the CARLA ego-vehicle parameters to our project. The reference system of the vehicle
is centered on the rear axle, and the orientation of the frame is based on the LiDAR
frame, that is, X-axis pointing to the front, Y-axis to the left and Z-axis above. The
angular velocity at Z is positive according to the right hand rule, so the right turns are
considered negative. The speed commands generated by the simulator are interpreted
by the local navigation system (in particular, the low-level controller), giving rise the
corresponding accelerations and turning angle.
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Fig. 3. First and second row represent, respectively, the linear velocities and described trajectory
projected onto the corresponding CARLA scenario for Stop with car detection (a,c) and Stop
with no car detection (b,d) behaviours

4.3 Sensors

From the sensors perspective, the agent sensor suite can be modified in a flexible
way. Most common sensors in CARLA world are LiDAR, GPS and RGB cameras
as well as their corresponding pseudo-sensors that provide semantic segmentation and
groundtruth depth. Moreover, camera parameters include 3D orientation and position
with respect to the car coordinate system, field-of-view and depth of field. The original
configuration of the on-board sensors of the ego-vehicle had a 800x600 RGB camera
sensor placed at the front of the vehicle with a FoV of 100 °, a 32-channels LiDAR, a
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GPS sensor, a collision sensor and a lane invasion sensor. In our case, the position of the
LiDAR and camera sensors are manually configured in order to obtain the same frames
distribution that in our real-world vehicle. Based on the bridge, the LIDAR information
can be published in PointCloud2 ROS format with the Z axe pointing up, Y left and the
X inwards. Image messages are published with the Z axe inwards, the Y down and the
X pointing right in the image plane. We take advantage of the semantic segmentation
provided by CARLA so as to colour the LiDAR point cloud and perform the coloring
clustering, placing the pseudo-sensor at the same position and orientation that the RGB
camera sensor, both with a resolution of 1280x720, since it is the resolution of the ZED
camera equipped in our real-world electric car. Moreover, the position of the GPS sen-
sor is displaced to the center of the rear axle, required by the local navigation system.
The remaining sensors keep unmodified. As observed, CARLA provides a straightfor-
ward way to add or remove sensors from the vehicle or even modify their parameters,
to adjust the simulation to the real-world as best as possible.

S EXPERIMENTAL RESULTS

One of the best advantages of CARLA is the possibility to create ad-hoc urban layouts,
useful to validate the navigation architecture in challenging driving scenarios. This code
can be downloaded from the Scenario Runner repository, associated to the CARLA
GitHub. This repository offers an execution engine for CARLA and traffic scenario
definition. The scenarios are inspired in the CARLA Autonomous Driving Challenge
(CADC), selected from the NHTSA pre-crash typology [36]. The features of these sce-
narios can be defined through a Python interface, such as the presence of additional
obstacles, start condition for the adversary (e.g. pedestrian or vehicle), position and
orientation of the dynamic obstacles in the environment, weather, etc. In this work we
study the linear velocity and the odometry of the ego-vehicle throughout the follow-
ing use cases: Stop with car detection, Stop with no car detection, Pedestrian Crossing,
Adaptive Cruise Control (ACC) and Unexpected Pedestrian. A video demo for each of
them can be found in the following play list Simulation Use Cases >. Due to size con-
straints, we refer the readers to [7] for a deeper explanation of the behaviour that the
ego-vehicle must carry facing to the corresponding traffic scenario. Nevertheless, Table
1 shows the main HIBPNs features used to manage the logic of these use cases(inputs,
input modules, outputs, output modules, number of nodes and number of transitions).
The resulting graphics are segmented using different colours, corresponding to the
current node of the associated PN. Both Stop use cases are inspired in the Traffic Sce-
nario 09 (Right turn at an intersection with crossing traffic) of the CADC, demonstrating
a similar behaviour since the logic performed by the PNs is the same. It is appreciated
that the ego-vehicle waits 2.3 s in front of the stop line in the use case of Stop with no
detection (Fig. 3(b), Fig. 3(d)). This time is approximately the same that the ego-vehicle
waits with the presence of an adversary vehicle (Fig. 3(a), Fig. 3(c)). This behaviour is
coherent, since the Stop PN presents a transition that requests O m/s for the ego-vehicle
in addition to 1 extra s to wait for safety, in the same way that a real-world car would

3 Simulation Use Cases link: https://cutt.ly/prUzQLi
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Fig. 4. First and second row represent, respectively, the linear velocities and described trajectory
projected onto the corresponding CARLA scenario for Pedestrian Crossing (a,c) and Unexpected
Pedestrian (b,d) behaviours

do. Regarding the Pedestrian Crossing use case (Fig. 4(a), Fig. 4(c)), it is inspired in the
Traffic Scenario 04 (Obstacle avoidance with prior action) of the CADC. As observed
in Fig. 2(a), in this work we define an additional safety area (Yellow rectangle in RVIZ
simulator) around the pedestrian crossing, in order to activate the pedestrian detection,
carried out by the event monitor, in all this area, including the sidewalks.

While V-REP does not offer the possibility to configure a variable velocity for the
adversary, being the ACC limited to decrease the ego-vehicle velocity till the adversary
fixed velocity [ 7], we take advantage of the possibilities offered by CARLA to configure
the behaviour of the adversary in this use case. In that sense, Fig. 6(a) shows the linear
velocity under the effects of the ACC in blue, being the linear velocity of the ego-vehicle
adjusted to the variable adversary linear velocity. Moreover, Fig. 6(c) shows how the
distance is decreased till 22/23 m, where the ACC is kept until the traffic scenario
is concluded. It can be observed that the ACC behaviour starts at the exact moment
in which the adversary vehicle is detected. This new version of our ACC analysis is
inspired in the Traffic Scenario 02 (Longitudinal control after leading vehicle’s brake)
of the CADC.

The last use case that we validate in this paper is inspired in the Traffic Scenario
03 (Obstacle avoidance without prior action) of the CADC. In this traffic scenario, the
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Table 2. Reactive control analysis on CARLA simulator

NV (km/h) /D (m)|| 12 || 16 20 24
14.4
18
21.6
25.2

28.8

NV: Nominal Velocity of the ego-vehicle (km/h). D: Minimum distance between the pedestrian
and vehicle BEV centroid to allow the pedestrian start its trajectory

Fig. 5. Unexpected Pedestrian scenario. The pedestrian can be found behind the bus stop, so the
perception systems detects it at the moment it is entering the road

ego-vehicle suddenly finds an unexpected obstacle on the road and must perform an
avoidance maneuver or an emergency break. In our case, we design our own scenario
in such a way an unexpected pedestrian jumps to the road, being totally occluded by a
bus stop kiosk. As expected, Fig. 4(b) and Fig. 4(d) show that no high-level behaviour
is launched because this situation is not included as an use case in the PN. However, our
low-level (reactive) control performs an emergency break until the car is stopped in front
of the obstacle, and resumes the navigation once the obstacle leaves the driving lane.
In this way, we validate the reactive control of our architecture, always in background
execution, in those cases in which none of the specific use cases PN are launched.
This strategy shows a good working in unexpected situations due to the high frequent
execution of our reactive control.

A robustness analysis of our reactive control is depicted in Table 2. We show some
parameters of the obstacle avoidance maneuver for different jumping distances (D(m))
of the unexpected pedestrian and different nominal speeds of the ego-vehicle (NV(Km/h)).
For each combination, the distance at which the reactive control detects the obstacle in
the road is calculated (m). Green cells indicate no collision has taken place and read that
the pedestrian has been overwhelmed. The D parameter represents the initial Euclidean
distance between the adversary pedestrian and the ego-vehicle BEV centroid, as illus-
trated in Fig. 5. This distance corresponds with the initial condition of the pedestrian,
placed at the sidewalk, 1.5 m away from the road. Whilst in the Pedestrian Crossing
use case an additional safety area is considered to detect the presence of pedestrians, in
this case the reactive control detects the pedestrian once it is inside the lane. After the



Train Here, Drive There 13

Front car dista

Linear Velocit

®

Velocity (m/s)
s o
Distance to car (m)

S0 310 320 33 340 350 360 370 380
Time (s)

(a) (b) (©

0 310 320 33 360 350 360 370 380
Time (s)

Fig. 6. Analysis of the ACC use case with variable adversary vehicle velocity. (a) represents the
ego-vehicle linear velocity, (b) the ego-vehicle odometry projected onto the CARLA world, (c)
analysis of the euclidean distance between the ego-vehicle and adversary throughout the use case

detection a braking maneuver is performed. As expected, the faster the vehicle goes, the
lower the distance at which the reactive control detects for the first time the pedestrian
inside the lane. This is due to the ego-vehicle has travelled a greater distance, increas-
ing the likelihood of colliding with the pedestrian, and the ego-vehicle must perform
the emergency break in a shorter distance.

6 CONCLUSIONS AND FUTURE WORKS

This work presents the validation of our ROS-based fully-autonomous driving archi-
tecture, focusing in the decision-making layer, with CARLA, a hyper-realistic, real-
time, flexible and open-source simulator for autonomous vehicles. The simulator and
its bridge, in charge of communicating the CARLA environment with our ROS-based
architecture, on the one hand, and the navigation architecture, on the other hand, have
been integrated in two Docker images, in order to gain flexibility, portability and iso-
lation. The decision-making is based on Hierarchical Interpreted Binary Petri Nets
(HIBPN), and our perception is based on the fusion of GPS, camera (including se-
mantic segmentation) and LiDAR. The validation has consisted on the study of some
traffic scenarios inspired on the CARLA Autonomous Driving Challenge, such as Stop,
Pedestrian Crossing, Adaptive Cruise Control and Unexpected Pedestrian, in addition
to an analysis of our reactive control in terms of emergency brake without prior action.
We hope that our distributed system can serve as a solid baseline on which others can
build on to advance the state-of-the-art in validating fully-autonomous driving archi-
tectures using virtual testing. As future works, a deep learning based 3D Multi-Object
Tracking will be implemented and multiple adversaries will be included in order to get
more challenging situations to improve the reliability, effectiveness and robustness of
our system, so as to validate the architecture and test it in our real-world electric vehicle.
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