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Alcalá de Henares (Madrid), Spain
pablo.alcantarilla, bergasa, parra@depeca.uah.es, dsg68818@telefonica.net

Abstract—In this paper we present a 6DOF metric
SLAM system for outdoor enviroments using a stereo
camera, mounted next to the rear view mirror, as the
only sensor. By means of SLAM the vehicle motion
trajectory and a sparse map of natural landmarks
are both estimated at the same time. The system
combines both bearing and depth information using
two different types of feature parametrization: inverse
depth and 3D. Through this approach near and far
features can be mapped, providing orientation and
depth information respectively. Natural landmarks
are extracted from the image and are stored as 3D or
inverse depth points, depending on a depth thresh-
old. At the moment each landmark is initialized, the
normal of the patch surface is computed using the
information of the stereo pair. In order to improve
long-term tracking a 2D warping is done considering
the normal vector information of each patch. This
Visual SLAM system is focused on the localization of
a vehicle in outdoor urban environments and can be
fused with other cheap sensors such as GPS, so as to
produce accurate estimations of vehicle’s localization
in a road. Some experimental results under outdoor
environments and conclusions are presented.

I. Introduction

Real-time Simultaneous Localization and Mapping has
an important key role in robotics. In recent times, SLAM
has captured the attention of computer vision researchers
and the interest of using cameras as sensors has grown
considerably due to mainly three reasons. Cameras are
cheaper than commonly used scan-lasers, they provide
rich visual information about scene elements and are easy
to adapt for wearable systems. According to that, the
range of SLAM based applications has spread to non
typical robotic environments such as augmented reality
[1], non-invasive surgery [2] and vehicle localization [3].

In this work a 6DOF Stereo SLAM system is proposed
in order to develop a robust localization system, using
only a cheap stereo camera mounted next to the rear view
mirror, able to complement a standard GPS sensor for
autonomous vehicle navigation where GPS signal does
not exist or it is not reliable (tunnels, urban areas...). At
the same time, a sparse map of high quality features is
computed. This optimized map contributes to a better
localization estimate and prevents the system from drift-
ing in situations where the vehicle visits some areas that
were previously visited, i.e. loop closing situations. The
main advantages of using a stereo system instead of a
monocular one were described in [4].

The traditional approach in in the literature for solving
the SLAM problem, is using an extended Kalman Filter
(EKF) with the vehicle pose and static landmarks as
the evolving filter state. This EKF approach has some
drawbacks as it is explained in [5]. The main drawback
of the EKF implementation is that the computational
requirement for the filter update increases quadratically
in large-scale maps as a function of the landmarks intro-
duced into the filter O(n2). A typical solution to cope
with this problem is submapping, where the global map
is obtained fusing the information from local submaps
[3], [6].

Our system follows a Davison’s SLAM approach [7].
That is, a few high quality features are tracked and
used to compute the position of the camera creating a
sparse map of high quality textured landmarks using an
Extended Kalman Filter (EKF). Paz et al. proposed in
[8] a 6DOF Stereo EKF-SLAM system with stereo in
hand for large indoor and outdoor environments. The
inverse depth parametrization proposed by Civera et
al. [9] for the MonoSLAM approach is adapted to the
StereoSLAM version so as to provide distance and orien-
tation information. Point features are extracted from the
images and are classified as 3D features if the disparity
is enough, or stored as inverse depth features otherwise.
Their Visual SLAM algorithm generates conditionally in-
dependent local maps and finally, the full map is obtained
using the Conditionally Independent Divide and Conquer
algorithm, which allows constant time operation most
of the time [6]. Although results are good considering
large maps in indoor/outdoor environments, the range of
camera movements is limited, since no patch adaptation
is done and only 2D image templates correlations are
carried out in the matching process. By means of an
empirical analysis, they suggest choosing a threshold of
depth 5 m, for switching between inverse depth and 3D
features. Besides, our sequences are more suitable to
show the benefits of an inverse depth parametrization
for far features.

The accuracy of the stereo sensor is limited up to
a certain depth, depending mainly on the baseline of
the sensor. In typical outdoor road vehicles sequences,
is common to have very far landmarks. If we try to
measure the 3D position of a far feature, which is located
beyond the limits of our sensor, the uncertainty in the
measurement will be very high. On the contrary we can



reduce the uncertainty of far features if we just measure
the orientation of the feature.

The two key contributions of our work, are the use of
inverse depth and 3D features for providing both depth
and angular information, and a 2D homography warping
method considering information from both cameras of
the stereo pair. This paper is organized as follows: the
general structure of the system is explained in section
II. In section III we deal with the problem of how to
switch between inverse depth or 3D parametrization.
In The 2D homography warping for patch adaptation
is described in section IV. Finally, some experimental
results are presented in section V. Main conclusions and
future works are discussed in section VI.

II. System Structure

Our system is based on a stereo camera mounted on
a mobile vehicle close to the rear view mirror. Fig. 1
depicts the common type of sequences in outdoor road
vehicle navigation. As it can be observed, some features
are very far with respect to the camera, whereas we can
have some features close to the camera. Both far and
close features are displayed in orange (weak) and red
(dark) respectively in Fig. 1.

Fig. 1. Typical outdoor road navigation sequences

The global state vector X incorporates the information
for the left camera and for the features. The camera state
is composed of its 3D position using cartesian coordi-
nates, the camera orientation in terms of a quaternion,
and the linear and angular speed, which are necessary
for the impulse motion model used for modelling the
camera movement. The motion model that is assumed is
a constant velocity and constant angular velocity model
explained in [7].

Xv [13,1] = (Xcam, qcam, vcam, ωcam)
t

(1)

Two types of feature parametrization are used pro-
viding orientation and depth information respectively.
Depending on the depth of the feature as described in
section III, features are initialized as inverse depth or
3D and are incorporated to the EKF SLAM algorithm.

X = (Xv, Y1 3D · · ·Yn 3D, Y1 INV · · ·Ym INV )
t

(2)

Interesting points are extracted from the image using
the Harris corner detector [10] and a subsequent subpixel
refinement. When the camera moves, these features are
tracked over the time to update the filter. In order
to track a feature, image position is predicted in both
cameras. Then, the feature appearance is transformed
using a 2D homography according to section IV, and
a correlation search is performed inside a search area
of high probability which is defined by the uncertain-
ties of the feature and the camera. ZMCC (Zero Mean
Cross Correlation) is used since its robustness against
lighting changes. An intelligent feature management is
implemented, so low-quality features are deleted from the
state vector.

Due to the use of a wide-angle lens, it is necessary
to use a distortion model correcting distorted images.
Unlike other SLAM systems [4], [7] radial and tangential
distortion are corrected using LUT (Look up tables), so
images are corrected previous to processing. Two main
advantages are obtained from using LUTs: firstly, this
method is faster than working with the distorted images
and then correcting the distorted projection coordinates,
and secondly, the matching process is less critical if
undistorted images are used.

A. 3D Features

For 3D features, the feature’s state vector encodes the
information about the 3D position of the feature in the
global map reference system.

Y3D [3,1] = (x, y, z)
t

(3)

B. Inverse depth Features

For inverse depth features, the feature’s state vector
encodes the information of the 3D optical center pose
from which the feature was first seen Xori, the orientation
of the ray passing through the image point (angles of
azimuth θ and elevation φ) and the inverse of its depth,
ρ. Fig. 2 depicts the inverse depth point coding:

Fig. 2. Inverse depth point coding

YINV [6,1] = (Xori, θ, φ, ρ)
t

(4)

In Fig. 2, m(θ, φ) is the unitary ray directional vector
from the camera to the feature. This unitary vector is
defined according to eq. 5:



m(θ, φ) [3,1] = (sinφ cos θ,− cos φ, sin φ sin θ)
t

(5)

The angles of azimuth and elevation are defined as
follows:

θ = tan−1
( z

x

)

(6)

φ = tan−1

(√
x2 + z2

y

)

(7)

III. Switching between Inverse Depth and 3D

Features

Harris corners are extracted from the images and
are classified as 3D features or stored as inverse depth
features, depending on a depth threshold. This depth
threshold is empirically set to 30 m. The value of
this threshold is chosen as a compromise between non-
linearity measurements, features uncertainty and the
overhead introduced by the inverse depth parametriza-
tion. After some experimental tests we found the value
of 30 m as a good threshold for our application.

Once the features are predicted in the EKF predic-
tion step, it is necessary to determine if the original
parametrization of the features has to be changed (i.e. if
an inverse depth feature is now below the depth threshold
and should adapt a 3D parametrization or viceversa).
Besides, a constraint is imposed: the feature has to
remain at least m frames (typically 15 frames) in its
new parametrization state before the switching. This is
done in order to avoid unnecessary switchings in case that
the depth estimate is above and below the threshold in
consecutive frames.

When an inverse depth feature is switched to a 3D
parametrization, it is necessary to adapt the feature’s
state and the covariances implied in the filtering process
by means of equations 8 for the feature’s state and 8,
10 for the covariances. In the same way we can switch
between 3D features to inverse depth, although this is
not a common case in autonomous navigation.

Y3D [3,1] = XORI +
1

ρ
· m(θ, φ) (8)

PYY3D [3,3] =

(

∂Y3D

∂YINV

)

· PY YINV
·

(

∂Y3D

∂YINV

)t

(9)

PXY3D [13,3] = PXYINV
·

(

∂YINV

∂Y3D

)t

(10)

IV. 2D Homography Warping

When a feature is going to be measured, the estimation
of the left camera position and orientation, which are
obtained both from the SLAM state vector, and the
normal surface patch vector are used for transforming
the initial image template appearance (due to changes
in viewpoint) by warping the initial template using a

2D homography. Our approach is related to the previous
works of [11], [12].

Considering two camera centered coordinate systems,
the transformation between two generic coordinate sys-
tems X1 and X2 is defined by:

X2 = R · X1 + T (11)

where R and T are the rotation matrix and the
traslation vector encoding the relative position of the two
coordinate systems. If X1 is a point on the plane defined
by eq. 12:

π : a · x1 + b · y1 + c · z1 + 1 = 0 (12)

This is a plane which does not pass through the origin,
and n = (a, b, c)t is the plane normal. According to this,
the following relationship can be found:

nt · X1 = −1 (13)

Using the previous equation, eq. 11 can be expressed
as follows:

X2 = R · X1 − T · nt · X1 =
(

R − T · nt
)

· X1 (14)

And therefore, image positions in the two camera
frames are related by the 2D homography:

U2 = C2 ·
(

R − T · nt
)

· C−1
1 · U1 (15)

Fig. 3 depicts the stereo geometry, and also the prob-
lems of obtaining the plane normal vector and the 2D
homography for warping the initial image template using
information from both cameras.

Fig. 3. Stereo geometry and locally planar surfaces

Eq. 16 denotes the relationship between the left camera
and the right camera coordinate systems:

UR = CR ·
(

RRL − TRL · nt
)

· C−1
L · UL (16)

The previous equation depends on the rotation matrix
RRL and the translation vector TRL between both cam-
eras. The values of these matrixes are known accurately,
since they are estimated in a previous stereo calibration
process. Supposing an affine transformation between left



and right image patches, the affine transformation HRL
A

can be expressed as:

H
RL

A = CR ·
(

RRL − TRL · nt
)

· C−1
L (17)

This affine transformation can be computed easily by
means of 3 correspondences of non collinear points and
with the assumption of locally planar patches. As it can
be observed, eq. 17 depends on the plane normal vector
n. From eq. 17 the product TRL · nt can be isolated.
Denoting this product as X, it can be obtained as follows:

X = TRL · nt = RRL − C−1
R · HRL

A · CL (18)

All the parameters of eq. 18 are known, since the affine
transformation HRL

A has been previously computed, and
the rest of implied matrixes are known from the stereo
calibration process. According to this, a system of 9
equations and 3 unknowns, which are the components
of the plane normal vector, can be found:











nx = X11

Tx
nx = X21

Ty
nx = X31

Tz

ny = X12

Tx
ny = X22

Ty
ny = X32

Tz

nz = X13

Tx
nz = X23

Ty
nz = X33

Tz

(19)

At the moment of a feature initialization, the plane
normal vector is computed in the way it has been
explained. Once this normal vector is estimated, the
2D homography between two different viewpoints can
be determined using the estimation of the current left
camera position and orientation and the left camera
position and orientation: from the feature initialization
viewpoint:

UCAM = CL ·
(

RCO − TCO · nt
)

· C−1
L · UORI (20)

where RCO and TCO are the rotation and translation
matrixes between the current left camera position and
the reference position when the feature was initialized.

V. Experiments in Outdoor Environments

In order to test the system performance, lots of out-
door sequences in urban environment under real traffic
condictions have been tested. In this work, we present
only the results of two of them. The cameras used were
the Unibrain Fire-i IEEE1394 modules with a baseline
of 30 cm. Image resolution was 320× 240 pixels and the
images were B&W sequences. The acquisition frame rate
was 30 frames per second. The sequences were processed
on a laptop with an Intel Core 2 Duo processor at
2.4GHz. Camera calibration is done in a previous setup
process. The Visual SLAM algorithm is implemented in
C/C++ and works in real-time as long as the number of
features doesn’t exceed 150 approximately.

Figures 5(a) and 5(b) illustrate the aerial views of the
trajectory done by the vehicle in each of the sequences.
For each of the sequences two different simulations were

done: without inverse depth parametrization (only 3D
parametrization) and considering both parametrizations
(inverse depth and 3D) with a depth threshold of 30 m.

The final map and trajectory for the first and second
sequences are displayed in Fig. 6 and Fig. 7 respectively,
considering the different cases. Table I shows the results
of the comparison between the different experiments. The
meaning of the parameters of this table are:

• % Inverse Features: Is the percentage of the total
number of features in the map that were initialized
with an inverse depth parametrization.

• Estimated Length (m): Is the estimate of the total
distance covered by the vehicle in the sequence.

• Mean PY Y Trace: Is the mean trace of the covariance
matrix PY Y for each of the features that compose
the final map. This parameter is indicative of the
uncertainty of the features, i.e. the quality of the
map.

In the first experiment, the car starts turning slightly
right and then left until the car reaches an almost straight
path for approximately 100 m. Then, the car turns right
until the end of the street. The estimated length run of
the first sequence is 166.07 m. In the second experiment
the car starts turning left and then approaches a straight
path for a while. After that, the car does a sharp right
turn and moves straight during some meters, yielding an
estimated length run of 216.33 m.

In figures 6(a) and 6(b) the two different trajectories
and maps for the first sequence are displayed in a 2D
view. In the same way, figures 7(a) and 7(b) depict
the two different trajectories and maps for the second
sequence.

The maps are composed of the 3D position of the
features with its respective covariance, which has an
elliptical shape. This covariance is an indicative of the
quality of the map and the uncertainty in the estimate
of the 3D position of the feature in the global map. The
main result that can be obtained from Tab. I or just
observing figures 6(b) and 7(b) is that the uncertainty in
the 3D position of the features is much lower in the cases
where an inverse depth parametrization is used. This is
because as mentioned previously, the uncertainty of a far
feature is much lower if it is parameterized as an inverse
depth feature.

The estimated trajectory reflects well the exact shape
of the real trajectory executed by the vehicle in both
experiments. The trajectory for the first sequence is
quite similar in both of the experiments. The estimated
length is also similar in both experiments, the estimated
length considering inverse depth parametrization is a
little bit lower than the other case. However, in the
second sequence the result considering an inverse depth
parametrization reflects better the shape of the real
trajectory and also the estimated length is closer to the
ground truth. At the end of each experiment it can be
observed that the quality of the trajectory is worst than
at the beginning of the sequence, which is also reflected



in the final estimated length of the trajectory. This is
because at the end of the sequences the number of land-
marks in the EKF filter is so high (more than 300) that
provokes inconsistency in the filter. This inconsistency
in the EKF is due to the errors in the approximation
of the observation model by a linearization, and also
because the representation of the uncertanties and 3D
feature position in a common global frame. Although
this is not the purpose of this work, this problem can
be solved by re-linearizing the filter after some error
has been accumulated creating a new submap with a
local coordinate frame, expressing the uncertainties and
relative 3D positions according to this new local frame.

The main drawback of the inverse depth parametriza-
tion is the computational overload of representing a
feature by 6 parameters instead of 3. This drawback
can be important if real-time constraints are needed
for the computation of each submap. Fig. 4 depicts the
state vector size during some frames of the sequence 1,
considering the two experiments. As it can be observed,
the difference in size due to the overload of using an
inverse depth parametrization is very significant as long
as new features are added to the map.

Fig. 4. Comparison of state vector size

VI. Conclusions and Future Works

In this paper we have presented a Visual SLAM ap-
proach that can estimate accurately the vehicle motion
trajectory in urban roads considering small environ-
ments. In the same way a sparse map of high quality
features is obtained. The system combines both bearing
and depth information by means of two different types
of feature parametrization: inverse depth and 3D. Inverse
depth features can be switched efficiently to 3D features
when its depth is below a depth threshold, reducing the
uncertainty of the 3D position of far features in the global
map, yielding a better localization.

We are very interested in studying the use of a dynamic
threshold as a function of the kind of environment,
instead of the static one that is currently used, so as
to mantain the same map quality keeping real time
constraints.

Considering 2D image templates and the normal vector
of the plane that contains the point in the space improves
the tracking considerably and it is better than using just
2D image templates. However, since the normal vector
is only estimated once per feature (at the moment each
feature is initialized), an update of the patch normals
estimation would likely be of benefit.

In further works, a high level SLAM will be developed
for mapping indoor and outdoor large environments
fusing the infromation from our metric submaps. In
addition, we are interested in fusing the stereo system
with a commercial GPS for outdoor experiments in order
to make the localization and mapping more robust, and
compare our results with an accurate ground truth. In
the same way, we will compare our Visual SLAM system
with another techniques such as stereo Visual Odometry.
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(a) Sequence 1 (b) Sequence 2

Fig. 5. Trajectories in the city for experiments 1 and 2

(a) Without Inverse Depth Par. (b) With Inverse Depth P. Z = 30 m

Fig. 6. Inverse Depth and 3D comparison: Sequence 1

(a) Without Inverse Depth Par. (b) With Inverse Depth P. Z = 30 m

Fig. 7. Inverse Depth and 3D comparison: Sequence 2

Seq. Case % Inverse Features Estimated Length (m) Mean PY Y Trace
1 Without Inverse Par. 0.00 133.97 2.4414
1 With Inverse Par., Zt = 30 m 12.25 129.08 0.7177
2 Without Inverse Par. 0.00 130.61 2.9729
2 With Inverse Par., Zt = 30 m 14.85 177.87 0.2188

TABLE I

Inverse Depth and 3D comparison: Estimated Length Run and Features Uncertainty


