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Abstract— This paper represents research in progress in 

Simultaneous Localization and Mapping (SLAM) for Micro 

Aerial Vehicles (MAVs) in the context of rescue and/or 

recognition navigation tasks in indoor environments. In this 

kind of applications, the MAV must rely on its own onboard 

sensors to autonomously navigate in unknown, hostile and GPS 

denied environments, such as ruined or semi-demolished 

buildings. This article aims to investigate a new SLAM 

technique that fuses visual information and measurements 

from the inertial measurement unit (IMU), to robustly obtain 

the 6DOF pose estimation of a MAV within a local map of the 

environment. The monocular visual SLAM algorithm along 

with the IMU calculate the pose estimation through an 

Extended Kalman Filter (EKF). The system consists of a low-

cost commercial drone and a remote control unit to 

computationally afford the SLAM algorithms using a 

distributed node system based on ROS (Robot Operating 

System). Some experimental results show how sensor fusion 

improves the position estimation and the obtained map under 

different test conditions. 

Keywords—micro aerial vehicles; indoor navigation; sensor 

fusion; simultaneous localization and mapping; robot operating 

system 

I.  INTRODUCTION 

The growing research on MAVs and the consequent 
improvement of technologies like microcomputers and 
onboard sensor devices have increased the performance 
requirements of such kind of systems. Enabled by GPS and 
MEMS inertial sensors, MAVs that can fly in outdoor 
environments without human intervention have been 
developed [1,2,3]. Unfortunately, most indoor environments 
remain without access to external positioning systems, and 
autonomous MAVs are very limited in their ability to operate 
in these areas.  

Traditionally, unmanned ground vehicles operating in 
GPS-denied environments can rely on dead reckoning and 
onboard environmental sensors for localization and mapping 
using SLAM techniques. However, attempts to achieve the 
same results with MAVs have not been as successful due to 
several reasons: the inaccuracy and high drift of Inertial 
Navigation Systems (INS) compared to encoder-based dead 
reckoning, the limited payload for sensing and computation, 
and the fast and unstable dynamics of air vehicles, are the 
main challenges which must be tackled. 

Especially, pose estimation is essential for many 
navigation tasks, including localization, mapping and 
control. The technique used depends mainly on the available 

on board sensors, which in aerial navigation must be 
carefully chosen due to payload limitations. Through their 
low weight and consumption, most commercial MAVs 
incorporate at least one monocular camera, so VSLAM 
(Visual SLAM) techniques have been widely used [4, 5]. 
However, most of these works have been limited to small 
workspaces that have definite image features and sufficient 
sunlight. Furthermore, computational time is too high for the 
fast dynamics of aerial vehicles, making difficult to control 
them. On the other hand, despite their greater weight and 
consumption, range sensors such as RGB-D cameras or laser 
range sensors have also been used on MAVs due to their fast 
distance detection. 

The work presented in this paper is part of the ISLAMAV 
project (affiliation) whose final objective is to fuse several 
sensors to improve the pose estimation for MAVs in indoor 
environments. As a strategy of the fusion algorithm, each of 
the sensors must be able to provide its own pose estimation 
to endow the system with some redundancy that allows it to 
work in different environmental conditions. In [6] we 
presented the whole architecture –which includes laser, 
vision and inertial sensing-, while in this paper we focus only 
on monocular camera and IMU fusion.  

To face the computational requirements, the system is 
composed of a flight and a ground unit, so that code can be 
distributed in different nodes using ROS (Robot Operating 
System).  

The study explained in this paper uses two monocular 
VSLAM algorithms to calculate the pose estimation (along 
with the measurements from the IMU) and the map of the 
environment: LSD-SLAM [7] and ORB-SLAM [8]. 

One of the main problems of monocular camera VSLAM 
algorithms is the fact that it cannot calculate the scale of the 
data of tracking and mapping. It leads to a system that is not 
working with real-scale data, what could affect the integrity 
of an aerial robot. To solve this problem, our system uses the 
data from the IMU to calculate the dynamic scale of the 
SLAM and return the real-time pose of the MAV without 
scale ambiguity.  

The remaining part of this paper is organized as follows. 
Section 2 discusses related work. Section 3 describes the 
overall system. The SLAM approach is explained in section 
4. The experimental results are presented in Section 5. 
Finally, it is followed by the conclusion and future work in 
Section 6. 
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II. RELATED WORK 

The most challenging part of SLAM for MAVs is to 
obtain the 6DOF pose of the vehicle without odometry 
information. To do this, different sensor sources have been 
suggested, such as laser range sensors [9], monocular 
cameras [4], stereo cameras [5] or RGB-D sensors [10].  

Due to weight limitations (in addition to power 
consumption), most of the works only use the onboard 
camera and IMU to apply VSLAM (Visual SLAM) 
techniques [11,12,13,14,15,16,17]. These systems 
demonstrate autonomous flight in limited indoor 
environments using VSLAM techniques that are out-dated, 
what results in inaccurate estimations and poor control 
results. 

In this work, up-to-date VLSAM algorithms are fused 
with measurements from the IMU to solve the SLAM 
problem in complex indoor environments and robustly 
estimate the 6DOF pose of the MAV, using a distributed 
system with a flight unit and a ground station. Furthermore, 
the system is able to calculate the dynamic scale of the 
measurements, what makes it a scale-aware system. Due to 
it, the EKF and the control stage work with real scaled data, 
in contrast to other monocular VSLAM systems. 

III. SYSTEM OVERVIEW 

We address the problem of autonomous indoor MAV 
localization as a software challenge, focusing on high-level 
algorithms integration rather than specific hardware. For this 
reason, we use a low-cost commercial platform with minor 
modifications and an open-source development platform 
(ROS), so that drivers of sensors and some algorithms can be 
used without development. 

A. Hardware Architecture 

Our quadrotor MAV, shown in Fig. 1, is the Bebop from 
Parrot [18], a lighter (400 gr) and smaller (33x38x3.6cm) 
drone than the earlier ARDrone 2.0. This MAV can carry up 
to 200g of payload for about 5min and is equipped with a 
frontal “Fisheye” camera. It counts with another vertical 
camera, which is used for stabilization and horizontal 
velocity estimation. Besides, it has an ultrasonic altimeter, a 
3-axis accelerometer, 2 gyroscopes and a barometer. It 
incorporates an onboard controller 8 times more powerful 
than the one from the ARDrone 2.0 (dual-core processor 
Parrot P7), a quad-core graphic processor, flash memory of 
8Gb and a Linux distribution. It is controlled via Wi-Fi (it 
provides its own net) and a SDK is available for application 
development.  

Although the Bebop comes with some software for basic 
functionality, it’s neither open-source nor easy to modify, 
and so we treat the drone as a black box, using only the 
available W-LAN communication channels to access and 
control it. 

Specifically, these are the inputs/outputs we use in our 
SLAM system: 

 

 

Fig. 1.  Bebop Drone from Parrot, the commercial drone used as flying 

unit in our experiments. 

 
• Video channel, to receive the video stream of the 

forwards facing camera, with maximal supported resolution 
of 640x368 and frame rate of 30fps. 

• Navigation channel, to read onboard sensor 
measurements every 5ms. The data used by our system are: 

1. Drone orientation as roll, pitch and yaw angles 
(Φ̅, Θ̅, Ψ̅). 

2. Horizontal velocity in drone’s coordinate 

system (𝑣𝑑𝑥, 𝑣𝑑𝑦), calculated onboard by an 

optical-flow based motion estimation algorithm 
[19]. 

3. Drone height ℎ, obtained from the ultrasound 
altimeter measurements. 

• Command channel, to send the drone control 
packages, with the desired velocities of x and y axis; vertical 
speed and yaw rotational velocity: 

  𝒖 = (𝑣𝑥̂, 𝑣𝑦̂, 𝑣𝑧̂, Ψ̂̇)           (1) 

B. Software Architecture 

As it’s shown in Fig. 2, the onboard controller and 
processor perform sensor readings and basic control of the 
MAV. The ground station executes our SLAM system and 
also the control and planning strategies, the last ones being 
out of the scope of this paper. 

The SLAM system explained in this paper consist of two 
major components: (a) a monocular VSLAM system that 
obtains a 6DOF pose estimation (and a 3D map of the 
environment); (b) an Extended Kalman Filter that fuses the 
last estimation with the navigation data provided by the 
onboard sensors of the MAV to obtain a robust 6DOF 
estimation of the position of the robot in the generated map. 
Besides, we have implemented a PID controller that allows 
the MAV to reach goal poses using the estimated position. 

IV. SLAM APPROACH 

In the following subsections, we describe the modules of the 

SLAM system. 



 

Fig. 2. Software architecture of the ISLAMAV project (red modules are 

out of the scope of this paper). 

A. Monocular VSLAM 

After a study of the state-of-art monocular VSLAM 
algorithms, we decided to implement two of these algorithms 
in our system: LSD-SLAM (Large-Scale Direct Monocular 
SLAM) and ORB-SLAM (Oriented FAST and Rotated 
BRIEF SLAM), both available as ROS packages. 

LSD-SLAM is a direct (feature-less) monocular SLAM 
algorithm which, along with highly accurate pose estimation 
based on direct image alignment, reconstructs the 3D 
environment in real-time as pose-graph of keyframes with 
associated semi-dense depth maps. Due to the later 
implementation of the laser SLAM node and its 2,5D map, 
we are only using the 6DOF pose estimation of this 
algorithm as an input to the data fusion filter. We chose to 
use the laser’s map instead the one created by LSD-SLAM 
because of the better accuracy of the first one and due to the 
computational requirements needed by the last one. 

Fig. 3 shows the 3D map and pose estimation obtained 
by the LSD-SLAM technique in a room (up); and the 3D 
map and pose estimation obtained in the same room and 
across two corridors (down). While results are good in this 
case, the system needs a high amount of visual 
characteristics that are not available in dark zones, where it 
needs to be fused with other sensors. Furthermore, it is very 
sensitive to pure rotational movement. 

On the other hand, ORB-SLAM is a feature-based 
monocular SLAM. ORB-SLAM estimates the drone's 
position in an extremely accurate way. It makes it perfect for 
be implemented over a system based on a MAV due to its 
fast and unstable dynamics. Furthermore, thanks to a smart 
development of the algorithm it is able to do a reliable loop 
closing.  

Fig. 4 shows the pose estimation obtained with ORB-
SLAM in the same environment of Fig. 3. It can be deduced 
that data from other sensors is needed to correctly estimate 
the position of the MAV. While the tracking is correct in the 
room and along the corridor, it fails calculating the rotation 
angle after turning the corner. Furthermore, the changing 

scale makes to get a wrong estimation of distances (the 
length of the corridor after the corner is shortened). 

Fig. 5 shows the results obtained when the algorithm 
estimates de position of the camera around a square of 35m 
approximately. The loop closure algorithm allows the 
VSLAM technique to accurately track the real time pose of 
the camera. 

As said before, one of the main problems when working 
with monocular VSLAM is scale ambiguity. As we need to 
work with a scale-aware system, we developed a method to 
calculate the scale based on onboard sensing. Due to it our 
system works with real-scale magnitudes. To solve this 
problem, the system uses the altitude measurements from the 
altimeter and VSLAM for calculating the scale as follows: 

 𝑠𝑐𝑎𝑙𝑒 =
ℎ𝐼𝑀𝑈

ℎ𝑉𝑆𝐿𝐴𝑀
              (2) 

 𝑥𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑥𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒          (3) 

 𝑦𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑦𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒          (4) 

 𝑧𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑧𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒           (5) 

 

The scale is calculated at each iteration of the node to 
avoid problems due to dynamic changes. 

Fig. 3. Results of LSD-SLAM. The first picture represents the translation of 

MAV's camera around a room. The second one represents the results of the 
translation around the same room and along two corridors. The green line 

indicates de track where the camera went over. The blue marks are the 

camera’s poses where the VSLAM algorithm captured a kayframe. The red 
marks correspond with the actual pose of the camera. The grey-scale shapes 

are the 3D map of the environment made by LSD-SLAM. 



 

Fig. 4. Results of ORB-SLAM estimating the pose of the camera in the 
same environment of Fig. 3. 

 

 

B. Data Fusion with EKF 

In order to fuse all available data, we employ an 
Extended Kalman Filter (EKF). This EKF is also used to 
compensate for the different time delays in the system, as 
detailed described in [17], arising from wireless LAN 
communication and computationally complex visual 
tracking. 

The EKF uses the following state vector: 

𝝌𝑡 ≔ (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝑣𝑥𝑡 , 𝑣𝑦𝑡 , 𝑣𝑧𝑡 , Φ𝑡 , Θ𝑡 , Ψ𝑡 , Ψ̇𝑡)
𝑇
∈  ℜ10  (6) 

where (𝑥𝑡 , 𝑦𝑡 . 𝑧𝑡) is the position of the MAV in meters (m); 
(𝑣𝑥𝑡 , 𝑣𝑦𝑡 , 𝑣𝑧𝑡) the velocity in meters/second (m/s); 
 Φ𝑡 , Θ𝑡 , Ψ𝑡 the roll, pitch and yaw angles in radians (rad); and 

(Ψ̇𝑡) the yaw-rotational speed in radians/second (rad/s). All 

of them are evaluated in world coordinates. In the following, 
we define the prediction and observation models.  

1) Prediction Model 

The prediction model is based on the full motion model 
of the quadcopter’s flight dynamics and reaction to control 
commands derived in [17]. A new calibration of the model 
parameters has been done for the Bebop Drone. 

The model establishes that the horizontal acceleration of 
the MAV is proportional to the horizontal force acting upon 
the quadcopter, that is, the accelerating force minus the drag 
force. The drag is proportional to the horizontal velocity of 
the quadcopter, while the accelerating force is proportional 
to a projection of the z-axis of the drone onto the horizontal 
plane, which leads to:

𝑣𝑥𝑡 = 𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ cosΨ + sinΦ sinΨ))  7) 

𝑣𝑦𝑡 = 𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ sinΨ − sinΦ cosΨ))  (8)

 

Fig. 5. Results of ORB-SLAM estimating the pose of the camera around a 
square. 

 
Furthermore, the influence of the sent control command 

𝐮 = (𝑣𝑥̂, 𝑣𝑦̂, 𝑣𝑧̂, Ψ̂̇) is described by the following linear 

model: 

  Φ̇𝑡 = −𝐾3(𝐾4𝑣𝑦̂𝑡 +Φ𝑡)          (9) 

  Θ̇𝑡 = 𝐾3(𝐾4𝑣𝑥̂𝑡 − Θ𝑡)          (10) 

  𝑣𝑧̇𝑡 = 𝐾7(𝐾8𝑣𝑧̂𝑡 − vz𝑡)         (11) 

  Ψ̈𝑡 = 𝐾5 (𝐾6Ψ̂̇𝑡 − Ψ̇𝑡)          (12) 

We estimated the proportional coefficients K1 to K8 from 
data collected in a series of test flights. From equations (7) 
to (12) we obtain the overall state transition function:  

(
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(13) 

2) Inertial Navigation Observation Model 

This model relates the onboard measurements obtained 
through the navigation channel of the quadcopter described 
in section III.A (that we called “navdata” in figure 2) and the 
state vector. The quadcopter measures its horizontal speed 

(𝑣𝑑𝑥̅̅ ̅̅ ̅, 𝑣𝑑𝑦̅̅ ̅̅ ̅) in its local coordinate system, which we 

transform into the world frame (𝑣𝑥, 𝑣𝑦). The roll and pitch 
angles measured by the accelerometer are direct 
observations of the corresponding state variables. On the 
other hand, we differentiate the height measurement and the 
yaw measurement as observations of the respective 
velocities. The resulting measurement vector zNAVDATA and 
observation function  ℎ𝑁𝐴𝑉𝐷𝐴𝑇𝐴(𝝌𝑡) are: 

 



 𝑧𝑁𝐴𝑉𝐷𝐴𝑇𝐴: = (𝑣𝑑𝑥̅̅ ̅̅ ̅, 𝑣𝑑𝑦̅̅ ̅̅ ̅, ℎ̅𝑡 , Φ̅, Θ̅, Ψ̅t  )                (14) 

 ℎ𝑁𝐴𝑉𝐷𝐴𝑇𝐴(𝝌𝑡) ∶=

(

 
 
 

𝑣𝑥𝑡𝑐𝑜𝑠Ψ𝑡 + 𝑣𝑦𝑡𝑠𝑖𝑛Ψ𝑡
−𝑣𝑥𝑡𝑠𝑖𝑛Ψ𝑡 + 𝑣𝑦𝑡𝑐𝑜𝑠Ψ𝑡

𝑧𝑡
Φ𝑡
Θ𝑡
Ψ𝑡 )

 
 
 

      (15) 

3) VSLAM Obvservation Model 

When the VSLAM algorithm successfully tracks a video 
frame, its 6DOF pose estimation is transformed from the 
coordinate system of the front camera to the coordinate 
system of the quadcopter, leading to a direct observation of 
the quadcopter’s pose given by: 

  𝑧𝑉𝑆𝐿𝐴𝑀,𝑡: = 𝑓(𝐸𝐷𝐶𝐸𝐶,𝑡)    ∈  ℜ
6                    (16) 

 ℎ𝑉𝑆𝐿𝐴𝑀(𝝌𝑡) ∶= (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , Φ𝑡 , Θt, Ψ𝑡)
𝑇   ∈  ℜ6      (17) 

where 𝐸𝐶,𝑡  ∈  𝑆𝐸(3) is the estimated camera pose, 

𝐸𝐷𝐶 ∈  𝑆𝐸(3) the constant transformation from the camera 
to the quadcopter coordinate system and 𝑓 ∶  𝑆𝐸(3)  → ℜ6 
the transformation from an element of SE(3) to the roll-
pitch-yaw representation (𝑥, 𝑦, 𝑧, Φ, Θ,Ψ). 

C. PID Controller 

A PID controller was developed in order to control the 
movements of the MAV based on the estimated position. A 

reference (x̂, ŷ, ẑ, Ψ̂) is needed as the desired position of the 

drone in relation with the surroundings. The EKF will bring 
the estimation of the pose, as shown in Fig. 6. The difference 
between the reference and the estimated pose is the error that 
will be minimized by the PID controller, by sending to the 

MAV an appropriate control command u=(𝑣𝑥̂, 𝑣𝑦̂, 𝑣𝑧̂, Ψ̂̇), 

that is calculated in the following way: 

 

𝑣𝑥̂ = 𝑐𝑜𝑠Ψ[𝐾𝑝(𝑥̂ − 𝑥) + 𝐾𝑑 ∙ 𝑥̇] + 𝑠𝑖𝑛Ψ[𝐾𝑝(𝑦̂ − 𝑦) + 𝐾𝑑 ∙ 𝑦̇]
              (18) 

𝑣𝑦̂ = −𝑠𝑖𝑛Ψ[𝐾𝑝(𝑥̂ − 𝑥) + 𝐾𝑑 ∙ 𝑥̇] + 𝑐𝑜𝑠Ψ[𝐾𝑝(𝑦̂ − 𝑦) + 𝐾𝑑 ∙ 𝑦̇]
              (19) 

 𝑣𝑧̂ = 𝐾𝑝 ∙ (𝑧̂ − 𝑧) + 𝐾𝑑 ∙ 𝑧̇ + 𝐾𝑖 ∙ ∫(𝑧̂ − 𝑧)   (20) 

Ψ̂̇ = 𝐾𝑝(Ψ̂ − Ψ)            (21) 

This controller can be used to move the drone from one 
point to another one. It allows the algorithm drive the MAV 
along a series of points in the map so it follows a specific 
track. 

 

 

Fig.  6. PID Controller Blocks Diagram 

V. RESULTS 

For the purpose of testing our system with a reliable 
ground truth, we used a horizontal motion detector camera, 
which was installed in the ceiling of the test environment. It 
allows us to measure the XY movements of the drone using 
an external sensor. It is not possible to sense the altitude with 
this method, so we trust in the altimeter integrated in the 
MAV as the ground truth. This procedure allows us to 
contrast the position estimated by our algorithm with the true 
position detected by the external camera.  

ORB-SLAM was used during the tests which results are 
represented in Fig. 7, Fig. 8 and Fig. 9. We used this 
VSLAM algorithm instead of LSD-SLAM because we 
didn’t need the 3D map that LSD-SLAM could bring us –so 
the computational requirements were avoided–. 
Furthermore, we realized that ORB-SLAM represents a 
more robust VSLAM technique facing pure rotational 
movement and fast translations. 

As said before, the PID controller allows the MAV to 
execute a path through a series of points. As a test, we made 
the drone to fly trying to recreate a square of 1mx1m –which 
is plotted as a green square in Fig 7, Fig. 8, Fig. 9. 

As a first test, we run the algorithm with each of the 
stages of the EKF separately –this is, only with prediction 
stage, only with IMU correction stage and only with 
VSLAM correction stage–, shown in Fig. 7. As we are not 
able to test the vertical precision of the algorithm –were the 
IMU performance stands out– the better tracking of 
prediction and VLSAM correction stages are obvious. To 
represent the bad performance of the algorithm when it’s 
using only the IMU measurements, Fig. 7 plots the results of 
the method with all its drift. Below, Fig. 8 includes the same 
graph but zoomed in order to make easy to see the 
differences between implementations. 

The performance’s improvement of the system with the 
addition of the stages summarized on B is evaluated on the 
Fig 9. As shown, the system is most accurate with prediction 
and both IMU and VSLAM correction stages. That precision 
is the cause of this project and why we are making the fusion 
of VSLAM and IMU measurements –and as explained in VI, 
laser as a future new stage–. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper shows work in progress and initial results of 
an indoor SLAM system for MAVs that fuses measurements 
from a monocular camera and onboard sensors to obtain a 
better estimation of the 6DOF pose of the MAV and a map 
(3D if LSD-SLAM is being used) of the local environment. 

This work provides a scale aware tracking and mapping 
system, which will be incorporated to the whole architecture 
of the ISLAMAV project [6]. This will conclude in a system 
that could calculate in real time the position of the drone 
without drift and a 2.5D template or map of the environment. 
This will be extremely useful to estimate the real position of 
the MAV. Furthermore, this system will be more robust 
facing problems as lighting changes. 

 



 

 

Fig.  7. Zoom out of different stages implemented separately. 

 

Fig.  8. Zoom in of different stages implemented separately. 

 

 

 
Fig.  9. Perform of added stages. 
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