
Visibility Learning in Large-Scale Urban Environment

Pablo F. Alcantarilla, Kai Ni, Luis M. Bergasa, Frank Dellaert

Fig. 1. Given a large city-scale 3D reconstruction, we predict the visible 3D points for a query camera view by fusing both geometric
and appearance information from multiple neighbor cameras. Best viewed in color.

Abstract—A crucial step in many vision based ap-
plications, such as localization and structure from
motion, is the data association between a large map
of known 3D points and 2D features perceived by
a new camera. In this paper, we propose a novel
approach to predict the visibility of known 3D points
with respect to a query camera in large-scale envi-
ronments. In our approach, we model the visibility of
each 3D point with respect to a camera pose using a
memory-based learning algorithm, in which a distance
metric between cameras is learned in an entirely non-
parametric way. We show that by fully exploiting
the geometric relationships between the 3D map and
the camera poses, as well as the related appearance
information, the resulting prediction is much more
robust and efficient than conventional approaches. We
demonstrate the performance of our algorithm on a
large urban 3D model in terms of both speed and
accuracy.

I. Introduction

Large-scale 3D applications, such as robot localization
and structure from motion (SfM), have recently become
a more and more popular topic in robotics and com-
puter vision. With the introduction of handheld devices
equipped with cameras, accelerometers and GPS sensors
(e.g., mobile phones), extending these 3D applications
to such devices is very much desired. However, most of

Pablo F. Alcantarilla and Luis M. Bergasa are with Department
of Electronics, University of Alcalá. Alcalá de Henares, Madrid,
Spain. e-mail: pablo.alcantarilla, bergasa@depeca.uah.es

Kai Ni and Frank Dellaert are with School of Interactive Com-
puting, Georgia Institute of Technology, Atlanta, GA 30332, USA.
e-mail: nikai,dellaert@cc.gatech.edu

the existing approaches are designed for offline processing
due to their high computational cost.
One of the most computationally expensive steps in

vision-based localization is data association, in which
matching candidates between a large map of 3D points
and 2D features are retrieved and then usually validated
by geometric constraints using RANSAC [1]. For the
environments with highly repetitive textures, such as
cities, the traditional methods mainly depend on the
appearance information, which results in a very large
number of matching candidates due to the ambiguities
introduced by visually similar features [2].
Visibility prediction is a commonly used technique [3],

[4] to greatly reduce the ambiguities and speed up the
data association by making an accurate and robust pre-
diction of the most likely visible features for a given cam-
era pose. More specifically, in the problem of visibility
prediction, we want to determine whether a certain 3D
point in the known 3D environment can be perceived by
a given query camera. In this paper, we propose a novel
way to predict the visibility of 3D points efficiently and
robustly.
There are two main types of information that are

used for aiding data association. First, we have geo-
spatial information, which is widely used in tracking
based localization approaches, such as the work by Klein
and Murray [5] and Davison et al. [6]. These methods
can be quite efficient in a limited-size indoor space but
do not generalize well to large outdoor scenes. Moreover,
they need small baselines between the consecutive images
hence are not proper for the wide-baseline images taken

by most of the handheld devices.
Second, the appearance of the 3D structure is another

important source of information, which is typically ex-
ploited by using feature descriptors such as SIFT [7].
However, for very large databases, the computation time
to match the features in the current image to the 3D
points in the database can be prohibitively expensive,
and even the most advanced algorithms [8], [9] do not run
in real-time. One important reason is that those methods
tend to ignore the previous visibility information, i.e. the
3D points and their corresponding cameras poses. This
information can directly lead to a very fast prediction
based on the weak priors of the current pose and the ap-
pearance of the corresponding images without involving
expensive descriptors.
In this paper, we introduce a memory-based learning

framework to predict, for each 3D point, its visibility with
respect to a query camera pose. Our approach memorizes
camera poses for each feature in the dataset and uses a
non-parametric model to efficiently capture the visibility
of landmarks in cluttered and city-like environments.
Figure 1 shows an example featuring a large city-scale
3D reconstruction, comprising of recovered 3D points
and camera poses. A new camera with noisy pose prior
is queried, and our algorithm predicts the visibility of
the 3D points for that camera by fusing the information
from the nearby cameras, exploiting all the geometric
information available from the 3D environment. In this
way, we can considerably improve the data association
between the large map of 3D points and the features in
the current image, yielding higher quality matches than
conventional approaches.
In the remainder of the paper, we describe the re-

lated work in Section II and introduce our probabilistic
modeling of visibility in Section III. Then, we describe
our metric learning framework in Section IV and how
to obtain a very fast visibility prediction in Section V.
In Section VI, we show the experimental results of our
algorithm in a large-scale 3D reconstruction of St. Peter’s
Basilica in Rome. Finally, main conclusions and future
work are described in Section VII.

II. Related Work

Zhu et al. [10] showed how to build an optimal 3D land-
mark database and how to use this database for real-time
global localization. Through an intelligent subsampling
of the landmark database based on geometry constraints,
the size of the database was reduced without sacrificing
the accuracy in localization. In this approach landmarks
are characterized by their appearance using Histogram of
Oriented Gradients (HOG) [11]. The selection of putative
matches for pose estimation relies vastly on appearance
descriptors without exploiting the available geometry
information from the reconstruction. Data association
between current features in the image and 3D points
in the database is done by means of a vocabulary tree,
which is built by hierarchical K-means-clustering [8].

In order to speed-up their hierarchical database search
strategy, they perfor two different pruning stages of the
large database by means of geo-spatial constraints (3D
camera pose location and its uncertainty) and via a
vocabulary tree.
In [4] Wuest et al. showed an augmented reality ap-

plication in which they modeled for each feature the
probability of the locations from where every feature
can be tracked successfully. This probability is modeled
by means of a finite set of Gaussian mixtures. The
extension of this method for larger environments is dif-
ficult and computationally expensive. Moreover, since
they only take into account the camera translation for
their visibility prediction, their method only works with
small scenarios where the degrees of possible camera
orientations are very limited. As we will show later in our
experimental results (see Section VI), the viewing direc-
tion or camera orientation has a much stronger impact
than camera translation when predicting whether two
cameras share common features or not. This is also one of
the most important drawbacks of the mentioned work by
Zhu et al. [10], since their geo-spatial pruning only takes
into account camera translation and its corresponding
uncertainty, ignoring viewing directions.
Alcantarilla et al. [3] proposed a non-parametric frame-

work for learning the visibility of reconstructed 3D points
and used this visibility prediction for robust and fast
vision-based localization under small indoor scenarios
and baselines. Their algorithm learns a kernel function
that measures the similarity between two camera poses,
combining euclidean distance and normalized dot prod-
uct between camera translations and viewing directions
respectively. They learn the kernel parameters by fitting
a sigmoid function from the training data using nonlin-
ear regression techniques [12], ignoring the correlations
between the different cues that are used in the metric.
This makes the convergence of the nonlinear regression
highly dependent on the initial values of the unknown
parameters, and good guesses of the final value of the un-
known kernel parameters are necessary for convergence
and feature scaling problems [13].
In this paper, we propose a new metric learning al-

gorithm combining Gaussian kernel and Mahalanobis
distance and show results over large-scale urban environ-
ment 3D reconstructions. Our algorithm does not suffer
from initialization problems and learns its own scaling,
being more suitable for the addition of new cues to
the proposed metric. We have further investigated the
addition of new cues such as local histograms, which
have been succesfully applied to location recognition
problems [14], [15] recently.

III. Probabilistic Visibility Model

In the visibility prediction problem, we are interested
in the posterior distribution of the visibility vj for a
certain 3D point xj given the query camera pose θ,
denoted as P (vj |θ). For this purpose, we propose to

use a form of lazy and memory-based learning known
as Locally Weighted Learning [13]. This technique is a
simple memory-based classification algorithm and can
be implemented very efficiently. The idea is very simple:
given the training data that consists of a set of recon-
structed camera poses Θ = {θ1 . . . θN}, the 3D point
cloud X = {x1 . . . xM} and a query camera pose θ, we
form a locally weighted average at the query point and
take that as an estimate for P (vj |θ) as follows:

P (vj |θ) ≈

N
∑

i=1

k(θ, θi) · vj(θi)
N
∑

i=1

k(θ, θi)

(1)

Now, we will explain the meaning of the functions k(·)
and vj(·) that are involved in the locally weighted average
in Equation 1:

• The function k(θ, θi) is a weighting function or ker-
nel function that is used to calculate a weight, which
emphasizes those camera poses that are similar to
the query camera pose θ and deemphasizes very
different camera poses. This makes sense, since if
the camera at pose θi has already seen the point xj ,
we may expect that the closer the query camera is
to θi, the more likely it is to see point xj .

• The function vj(θi) just assigns a real value equal to
1 for those cases where a certain 3D point xj is visi-
ble by a camera pose θi and 0 otherwise. Specifically,
this function is a boolean random variable defined
as follows:

vj(θi) =

{

1 if xj is visible from camera θi
0 otherwise

(2)

According to Equation 2, the final approximation of the
locally weighted averaging for the visibility posterior can
be derived as:

P (vj = 1|θ) ≈

N
∑

i=1

k(θ, θ
vj=1

i)

N
∑

i=1

k(θ, θi)

(3)

where θ
vj=1

i are the camera poses from the training data
in which the 3D point xj is visible.

IV. Learning Kernel Functions

In this section, we show how to learn a proper distance
metric or kernel function between two camera poses. A
good distance metric (i.e. the kernel function k) is crucial
for the overall performance of the proposed approach.
Similar to the framework proposed by Weinberger and
Tesauro [16], our approach combines the Mahalanobis
distance and the Gaussian kernel, and it applies to any
distance-based kernel function with differentiable depen-
dencies on parameters specifying the distance function.
The Gaussian kernel is generally defined as follows:

Gij =
1

σ
√
2π

· exp
(

−d(~θi, ~θj)

σ2

)

(4)

where d(~θi, ~θj) is the squared distance between the vec-

tors ~θi and ~θj . These vectors encode different information
related to the camera pose and its associated image view.
We will explain in Section IV-A and IV-B how to define
these input vectors. For simplification, we can drop the
constant factor before the exponent in Equation 4 and
absorb σ2 in d(·), fixing σ = 1. A Mahalanobis distance
is a generalization of the Euclidean metric that takes into
account the correlations between variables and hence, it
is scale-invariant. The Mahalanobis distance between two
vectors ~θi and ~θj is defined as:

d(~θi, ~θj) = (~θi − ~θj)
T
M(~θi − ~θj) (5)

where M can be any symmetric positive semidefinite
real matrix, i.e. a matrix whose eigenvalues are all non-
negative. If M is equal to the identity matrix, the
Mahalanobis distance reduces to the Euclidean distance.
Unfortunately, learning the matrix M directly requires
enforcing a positive semidefinite constraint in the op-
timization problem, which is highly non-linear and is
also expensive to solve. One way to get rid of such an
expensive constraint is to decompose M as:

M = A
T
A (6)

whereA is a full rank matrix. By substituting Equation 6
into 5, we can express the Mahalanobis distance as the
Euclidean distance after the mapping ~θ → A~θ:

d(~θi, ~θj) =
∥

∥

∥
A(~θi − ~θj)

∥

∥

∥

2
=
∥

∥

∥
A~θij

∥

∥

∥

2
(7)

We learn an appropriate kernel function between two
camera poses by minimizing the loss function L defined
as follows:

L =
∑

i

∑

j≥i

(yij − kij)
2 (8)

where yij is the target value or the similarity score
between two camera poses, and kij is the estimate of the
target value obtained by combining the Gaussian kernel
and Mahalanobis distance. By means of Equation 6
we can rewrite the loss function L in Equation 8 in
terms of the unconstrained matrix A (instead of M).
By minimizing Equation 8 we obtain a metric in an
entirely non-parametric way. Finally, our kernel function
measures the similarity between two camera poses as:

kij ≡ k(~θi, ~θj) = exp
(

−
∥

∥

∥
A(~θi − ~θj)

∥

∥

∥

2

)

(9)

Note that Equation 9 indeed describes the similarity
between the two camera poses: when the output is equal
to 1, the two cameras are identical, and conversely when
the output is equal to 0, it means that they are extremely
different with no visible 3D points shared between each
other. In addition, Equation 9 shows how to compute
the target estimates kij involved in the minimization
problem described in Equation 8.
We define the target values yij as the mean of the ratios

between the intersection of the common 3D points with

respect to the number of 3D points visible to each of the
two cameras:

yij =
1

2
·
∣

∣

∣

∣

|Xi ∩Xj |
|Xi|

+
|Xj ∩Xi|

|Xj |

∣

∣

∣

∣

(10)

Indeed, the above equation gives an estimate of the over-
lap between two views. Figure 2 depicts the similarity
matrix for all pairs of camera poses in the dataset we
used in our experiments.
Our algorithm learns its own scaling (encapsulated

by matrix A) and is therefore invariant to the scaling
of the input vectors. This invariance to scaling is very
important when dealing with complex functions such as
visibility that involves cues with very different scales,
such as the translation and the orientation. In our ex-
periments we set the initial value of the matrix A to
the identity matrix, and the algorithm converges in few
iterations, satisfying the full-rank matrix A constraint.
The Levenberg-Marquardt algorithm [17] has been used
for all non-linear optimization in the metric learning
procedure. Next, we will explain how to define the input
vector ~θi for each camera pose.

Fig. 2. Similarity score matrix for the St. Peter’s Basilica dataset:
Note that most of the camera poses have common visible 3D points
with few camera poses. This means, that only the training data
nearby a query pose θi are informative to correctly predict the
visibility of a 3D point

A. Euclidean Distance and Viewing Direction Change

For each camera pose we define an input vector ~θi
that encodes geometrical information about the pose
with respect to the global coordinate frame set of the
3D reconstruction. Each camera pose is parametrized
by means of a vector ~θi = {Ti, Ri} (3D vector for the
translation and 4D unit quaternion for the rotation).
In particular for our metric learning, we use two cues
(difference in camera translation and viewing direction),
~θij = [dR dT]

T
, where dT is the Euclidean distance be-

tween the translation of two cameras, and dR defines the
normalized inner product between the viewing directions
of the two cameras (θi, θj).

B. Image Appearance Cue

Another important cue for a distance metric between
two camera poses is their corresponding image appear-
ance. The simplest way to utilize the image is by com-
puting the sum of pixel-wise distances. However, the

performance of this approach tends to drop considerably
when dealing with wide-baseline images with high spatial
variance. In this paper, we model the appearance by local
histograms, which are more invariant to small camera
motions and have been successfully applied to location
recognition problems [14], [15] recently.

More specifically, the RGB features are accumulated
over spatially localized 3 × 2 image grids. Within each
grid, the RGB space is quantized into 50 bins. Hence,
each image is represented as a 300-dimensional vector.
Adding the image appearance cue, we have the following
difference vector for any two cameras: ~θij = [dR dT dH]

T
,

where dH is the Euclidian distance between two local
histograms.

V. Speeding Up by Pre-pruning

In this section, we introduce a pre-pruning technique
to decrease the complexity of computing the visibility
for all the map elements, from the order of the map
size O(M) to O(K) where K denotes the number of
nearest neighbors of a given camera pose. A naive way of
computing the visibility is to iterate over every one and
apply Equation 3. The complexity of such an approach
increases linearly with respect to the size of the map,
M . However, the core observation is that the results of
the visibility prediction using Equation 3 will be mostly
zero, since most of the map elements in a large map
would not be observed at all by the K Nearest Neighbors
(KNNs) of the current query pose θ, effectively making
the numerator in Equation 3 zero.

As a consequence, once we find the KNNs of the
current query pose, we only need to predict the visibility
for the subset of map elements seen at least once by
these KNNs. Then, we can set the visibility to zero for
the rest of the map elements without computing them
at all. Finally, the locally weighted K nearest neighbor
approximation for the visibility posterior is:

P (vj = 1|θ) ≈

K
∑

i=1

k(θ, θ
vj=1

i)

K
∑

i=1

k(θ, θi)

(11)

where only the nearest K samples of the query pose
ΘK = {θ1 . . . θk} are considered.

VI. Experimental Results

We evaluate our algorithm using a real 3D database
built from 285 photographs of St. Peter’s Basilica in the
Vatican City, as depicted in Figure 1. The SfM process
is done as proposed in Snavely’s paper [18] and will not
be elaborated in this paper. The dataset comprises of
142, 283 3D points, 466, 222 image measurements, and
285 cameras. This difficult dataset is popular in the com-
puter vision community and has been previously used to
evaluate 3D reconstruction approaches such as [19].

A. KNNs Classification

We evaluate our Mahalanobis metric in terms of KNNs
classification. For this purpose, we compare the predicted
KNNs of our metric to the ground truth neighbors of
all the poses from the training dataset. The ground-
truth KNNs are obtained by means of the proposed
similarity score between two camera poses as shown in
Equation 10. For a query camera pose from the training
set, we compute the similarity score for all the connected
poses that share at least one visible feature in common.
Then, we obtain the KNNs by sorting the camera poses in
a decreasing order of the similarity scores. In this exper-
iment, we used leave-one-out cross-validation, skipping
the query camera pose from the training data.

First, we investigate the effectiveness of the cues used
in our proposed distance metric. For KNNs classifica-
tion, we compared the following metrics: Mahalanobis
metric with two cues (translation, viewing direction),
Mahalanobis metric with three cues (translation, viewing
direction, local histograms) and the Euclidean distance
of camera translation, viewing directions and image
histograms separately. Figure 3(a) depicts the average
KNNs classification error for all the camera poses of
the dataset that see at least one 3D point. A predicted
nearest neighbor will be classified as a false positive
if that neighbor is not included in the ground truth
neighbors set of a given query pose. Figure 3(b) depicts
a more restrictive ratio, the average KNNs classification
recall. This ratio is computed by considering only the
first K ground truth nearest neighbors, i.e. even if a
predicted neighbor shares some common 3D points with
a query pose, we will classify that neighbor as a wrong
one if it is not included in the first K ground truth
nearest neighbors. For obtaining these graphs, we varied
the number of neighbors K to consider in the prediction
and compute the ratios according to this K.

We can observe in Figure 3(a) that the lowest er-
ror ratio is obtained with the proposed Mahalanobis
metric with three cues (translation, viewing direction,
histograms). The Mahalanobis metric with two cues also
exhibits small error ratios similar to the ones obtained
with three cues, especially when K is above 10.

The error slightly increases as long as we consider
more NN in the prediction and a near constant error
is obtained for a large number of neighbors. The reason
for this, is that as long as we consider more NN, we are
adding neighbors whose similarity score with respect to
a query pose is low. For these neighbors, the differences
in camera translations and local histograms can be very
large, but viewing directions must be very similar. KNNs
classification for high values of K is more challenging,
and error ratios will slightly increase, since for these
cases viewing directions play a more important role
than camera translation and local histograms. Hence,
for high values of K viewing directions, error ratios
are similar to the ones obtained with the Mahalanobis

metric with three and two cues. In the experiment in
Figure 3(b) conclusions are similar. However, since we
compute averaged recall ratios considering only the first
K ground truth nearest neighbors, here we can observe a
gain in adding the appearance cue into the Mahalanobis
metric, and also a higher performance of the Mahalanobis
metric with three and two cues with respect to viewing
directions compared to Figure 3(a).

Viewing directions are a much more robust evidence
than camera translation distances, due to the fact that
people tend to shoot the same interesting object from
multiple views which have large baselines between each
other. In this case, even if the cameras can move wildly,
the viewing direction remains approximately the same.
Image histograms are also very useful cues, especially as
viewing directions become less reliable as the cameras
get close to the interested object. Imagine the scenario
in which people pass by a certain facade of St Peter’s
basilica while taking pictures. Both translations and
rotations of the cameras may change dramatically, yet
the appearance of the images will be very similar, and so
will the histograms of the images.

Figure 4 depicts two examples of KNNs classification,
showing the different NN rankings that were obtained
by means of the proposed Mahalanobis metric with
three cues and the ground truth information. That is,
a neighbor which is ranked as 1 should be a neighbor
that shares the highest number of visible 3D points
with respect to the query pose among all the connected
poses. Figure 4(a) shows classification results considering
only K = 4 neighbors of one of the images of the St.
Peter’s Basilica that was taken from St. Angel’s Bridge
at a distance of approximately 1 km from the basilica.
Figure 4(b) depicts a more challenging classification
scenario, since the photo was taken in the middle of St.
Peter’s Square, where appearance details are very similar
between slightly different view points due to the similar
sculptures surrounding the square. We can observe, that
even if rankings are not exactly the same, even in a
very difficult scenario such as Figure 4(b), all the first
predicted neighbors share visible 3D points with respect
to the query pose.

B. Visibility Prediction: Sensitivity to Noise and Number

of Nearest Neighbors

Now we evaluate the performance of our visibility
prediction with respect to different levels of noise, and
study the influence of the number of nearest neighbors K
in the resulting prediction. We evaluate the performance
of our approach by means of recall versus 1-precision

graphs [20]. For visibility prediction, we define recall and
1-precision as:

recall = #predicted visible
#real visible

1− precision = #false predicted visible
#all predicted visible

(12)

(a) (b)

Fig. 3. Evaluation of Metric Learning for KNNs classification. (a) Depicts the average KNNs classification error for all the camera poses
of the dataset that see at least one feature whereas (b) shows the average correct KNNs classification recall only considering the K ground
truth nearest neighbors.

Query Pose

(a)

Ground Truth

KNNs

Predicted

KNNs

Ground Truth

KNNs

Predicted

KNNs

1 2 3 4

1 2 3 4

1 2 2 1 3 3 4 9

1 6 2 1 3 3 4 13
Query Pose

(b)

Fig. 4. KNNs ranking: (a) St. Angel’s Bridge (b) St. Peter’s Square. We show on the left the KNNs ranking results obtained from
ground truth, and at the right, the ranking results obtained with our Mahalanobis metric (three cues). We show in red the ranking results
obtained with the proposed metric, whereas for ground truth, we display results in bold. For this experiment, we only considered the first
4 nearest neighbors.

where we know the number of real visible 3D points
for each of the poses from the dataset. To simulate the
noisy signals of a GPS sensor in the city, we added noise
with normal distribution to the ground-truth camera
pose and then predict the visible 3D points for this
noisy pose. We consider random Gaussian noise (mean µ,
standard deviation σ) for all the camera translation and
viewing direction components and then normalize the
noisy viewing direction vector to unit length. In addition,
we also added noise to the image histograms (the scale of
image histograms is normalized between 0 and 1). Table I
shows the two Gaussian noise settings that we used in our
experiments, distinguishing two different levels of noise.

According to Equation 11 we decide if a feature is
visible if its probability of being visible is higher than
a fixed threshold. By varying the value of this threshold,
we can obtain recall versus 1-precision graphs. In this
experiment we include all the camera poses as possible
KNNs of the noisy camera pose.

Figure 5(a) depicts averaged recall versus 1-precision

graphs for all camera poses in the dataset. We added ran-
dom Gaussian noise (N1 and N2 as defined in Table I)

Cue Noise Level Noise Level
N1 N2

Translation µ = 15m,σ = 30m µ = 5m,σ = 10m

Orientation µ = 0.1 , σ = 0.2 µ = 0.05, σ = 0.1

Histograms µ = 0.0, σ = 0.3 µ = 0.05, σ = 0.1

TABLE I

Random Gaussian noise settings in our experiments.

and considered K in the visibility prediction, comparing
Mahalanobis metrics with 2 and 3 cues (denoted as M2
and M3 respectively). The average number of real visible
3D points per camera pose in this dataset is 1666.

An important conclusion from Figure 5(a) is that a
higher recall is obtained when considering a small num-
ber of nearest neighbors in the prediction. The reason
for this is that as long as we increase the number of
neighbors, we are also adding more 3D points in the
prediction of Equation 11. Some of these 3D points may
not be truly visible from the query noisy pose, but they
may be visible from a local neighborhood of the query

noisy pose. Typically, for large baseline 3D reconstruc-
tions, one camera view shares most of its visible 3D
points with few camera poses, i.e. only the training data
nearby a query pose is informative enough to correctly
predict the visibility of a feature, as shown in Figure 2.
In addition, an approximate 20% gain in recall can be
obtained when the appearance cue is used. This cue
becomes less important, however, when the number of
neighbors increases. Furthermore, considering that we
can have noisy position measurements from a GPS or
another hand-held device, the image appearance is a very
useful cue, since in general, it is the less affected by noise.
Also, the reduction in recall when increasing the number
of neighbors is more significant for the Mahalanobis 3
cues case. This is because some neighbors may look
similar in terms of appearance but images can be taken
from different viewpoints, as for example happens inside
St. Peter’s Square, where image appearance is similar
and repetitive, but viewpoints are different.

C. Comparison with Heuristic Visibility Prediction

We compare our approach to a length and angle

visibility heuristic that has been widely used in the
literature [6]. This heuristic is very easy to compute and
provides good results in non-cluttered and small envi-
ronments. Feature visibility is calculated considering the
difference between the viewpoint from which the feature
was initially seen and a new viewpoint. This difference in
viewpoint has to be below some length and angle ratio
to predict the feature as visible. Usually a feature is
expected to be visible if the length ratio |hi|/|horig| is
close enough to 1 (in practice between 5/7 and 7/5 and
the angle difference β = cos−1((hi · horig)/(|hi||horig|))
is close to 0 (less than 45◦ in magnitude). However,
the main drawbacks of this criterion is that it can not
deal with occlusions since it assumes a transparent world
and that it has to predict its visibility for every feature,
which can be computationally expensive for very large
3D reconstructions.
Usually for very large city-scale reconstructions such as

the ones presented in [21], the number of camera poses
is more than a hundred times smaller than the number
of 3D points (e.g. in the Dubrovnik reconstruction we
have 4, 585 poses and 2, 662, 981 3D points and in the
St. Mark’s Square we have 13, 699 poses and 4, 515, 157
3D points), which means that we can obtain a substantial
speed up if we predict visibility by obtaining the KNNs of
a query camera pose, instead of predicting the visibility
for each feature individually.
We compare our approach with the heuristic visibility

prediction described above, but instead of checking the
visibility of each feature individually, which will incur in
a high computational demand and low recall, we intro-
duce some modifications. We first bound the regions for
possible camera neighbors, using geo-spatial constraints
(3D camera pose location) placing a sphere centered on
the query pose. Then we predict the visibility according

to the mentioned heuristic, just for those 3D points that
are seen by the camera pose neighbors that lie inside the
sphere. Finally, by varying the radius of the sphere, we
can generate recall versus 1-precision graphs.

As can be seen in Figure 5(b), we obtain results
with our visibility prediction which are superior to other
common geo-spatial constraints based on translation and
angle heuristics. Moreover, we can obtain a very high
recall for very high precision values, i.e. we get rid of
most of non-visible 3D points yielding a better descriptor
matching and a faster localization. We obtained the
graphs shown in Figure 5(b), considering noise level N2,
and a number of neighbors equal to K = 5 for our
visibility prediction. For the heuristic prediction, we used
the default values: 5/7 < |hi|/|horig| < 7/5 and β < 45◦.
We also performed another experiment considering a
more restrictive length ratio keeping the same angle ratio:
3/4 < |hi|/|horig| < 4/3. In addition, we can also observe
that there is a gain in performance comparing the graphs
with K = 5 and the graphs in Figure 5(a), where K was
set to 10 and 20.
A timing evaluation revealed that our MATLAB im-

plementation runs faster than 30 Hz (or 33.3 ms per
frame). Just predicting the visible 3D points for a query
camera pose takes 12.20 ms forK = 5. Visibility heuristic
in combination with geo-spatial pruning for a radius of
10 m takes 139.49 ms, whereas predicting the visibility
of all the 3D points individually with the heuristic takes
4.44 s. All timing results were obtained on a Core 2 Duo
2.2GHz computer. As shown in 5(b), we can see that
our algorithm obtained a more robust and faster visibil-
ity prediction, yielding better results than conventional
approaches.

VII. Conclusions and Future Work

In this paper we proposed a novel method for pre-
dicting the visibility of 3D points in large-scale urban
environments. In our approach, every map feature models
its visibility with respect to the camera poses via non-
parametric distributions. By means of a combination of
Mahalanobis distance and a Gaussian kernel, we showed
how to learn a similarity metric between two camera
poses in an entirely non-parametric way that is invariant
to the scale of the input vectors. We have discussed the
importance of the cues used in our metric and shown
the benefits of adding local image histograms instead of
using only camera translation and viewing direction.
For very large 3D reconstructions, the number of map

elements is more than a hundred times higher than the
number of camera poses. Based on this observation,
we think that for fast and robust vision-based localiza-
tion over large 3D reconstructions, our algorithm can
dramatically reduce the computation time and improve
robustness, contrary to other common approaches that
check the visibility of each of the 3D points from the
dataset individually or pruning-out information based in
geo-spatial constraints.

(a) (b)

Fig. 5. Recall versus 1-precision graphs: (a) Evaluations under different noise settings and the number of neighbors K (b) Comparisons
with respect to the heuristic visibility. The number of neighbors K is set to 5.

As future work, we are interested in applying our
idea to incremental SfM reconstruction, by incrementally
learning the Mahalanobis distance metric between cam-
era poses, and then showing the results of our method
in vision-based localization experiments under very large
city-scale environments. Moreover, the addition of new
cues to the proposed metric will be studied.

VIII. Acknowledgments

This work was supported in part by the
Community of Madrid under grant CM: S-
2009/DPI/1559(RoboCity2030 Project). Frank Dellaert
and Kai Ni gratefully acknowledge support from
the National Science Foundation through award IIS
- 0448111 ”CAREER: Markov Chain Monte Carlo
Methods for Large Scale Correspondence Problems
in Computer Vision and Robotics”. The authors
would like to thank Jon Cohen for his support in the
audio recording of the supplementary video and other
colleagues at University of Alcalá and Georgia Institute
of Technology for many useful discussions. We would
also like to thank Photosynth from Microsoft for the St.
Peter’s Basilica data.

References

[1] M. Fischler and R. Bolles, “Random sample consensus: a
paradigm for model fitting with application to image analysis
and automated cartography,”Commun. Assoc. Comp. Mach.,
vol. 24, pp. 381–395, 1981.

[2] G. Schindler, P. Krishnamurthy, R. Lublinerman, Y. Liu, , and
F. Dellaert, “Detecting and matching repeated patterns for
automatic Geo-tagging in urban environments,”in IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2008.

[3] P. Alcantarilla, S. M. Oh, G. Mariottini, L. Bergasa, and
F. Dellaert, “Learning visibility of landmarks for vision-based
localization,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), Anchorage, AK, 2010.

[4] H. Wuest, A. Pagani, and D. Stricker, “Feature management
for efficient camera tracking,” in Asian Conf. on Computer
Vision (ACCV), 2007.

[5] G. Klein and D. Murray, “Improving the agility of keyframe-
based SLAM,” in Eur. Conf. on Computer Vision (ECCV),
Marseille, France, 2008.

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
“MonoSLAM: Real-time single camera SLAM,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 29, no. 6, 2007.

[7] D. Lowe, “Distinctive image features from scale-invariant key-
points,” Intl. J. of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[8] D. Nistér and H. Stewénius, “Scalable recognition with a
vocabulary tree,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2006.

[9] G. Schindler, M. Brown, and R. Szeliski, “City-scale location
recognition,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2007.

[10] Z. Zhu, T. Oskiper, S. Samarasekera, R. Kumar, and H. Sawh-
ney, “Real-time global localization with a pre-built visual
landmark database,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2008, pp. 1–8.

[11] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for
Human Detection,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2005.

[12] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2007.

[13] C. Atkeson, A. Moore, and S. Schaal, “Locally weighted learn-
ing,”AI Review, vol. 11, pp. 11–73, April 1997.

[14] A. Torralba, K. Murphy, W. Freeman, and M. Rubin,
“Context-based division system for place and object recogni-
tion,” in Intl. Conf. on Computer Vision (ICCV), 2003, pp.
273–280.

[15] K. Ni, A. Kannan, A. Criminisi, and J. Winn, “Epitomic
location recognition,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2008.

[16] K. Q. Weinberger and G. Tesauro, “Metric learning for kernel
regression,” in In Proceedings of the Eleventh International
Workshop on Artificial Intelligence and Statistics (AISTATS),
Puerto Rico, 2007.

[17] M. Lourakis, “levmar: Levenberg-marquardt nonlinear
least squares algorithms in C/C++,” [web page]
http://www.ics.forth.gr/~lourakis/levmar/, 2004.

[18] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo Tourism:
Exploring image collections in 3D,” in SIGGRAPH, 2006.

[19] K. Ni, D. Steedly, and F. Dellaert, “Out-of-Core Bundle Ad-
justment for Large-Scale 3D Reconstruction,” in Intl. Conf. on
Computer Vision (ICCV), 2007.

[20] K. Mikolajczyk and C. Schmid, “A performance evaluation of
local descriptors,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 27, no. 10, pp. 1615–1630, 2005.

[21] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski,
“Building Rome in a Day,” in Intl. Conf. on Computer Vision
(ICCV), 2009.

