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Abstract

In this paper, we present a novel family of multiscale local feature descriptors, a theoretically and intuitively well justified variant
of SURF which is straightforward to implement but which nevertheless is capable of demonstrably better performance with com-
parable computational cost. Our family of descriptors, called Gauge-SURF (G-SURF), are based on second-order multiscale gauge
derivatives. While the standard derivatives used to build a SURF descriptor are all relative to a single chosen orientation, gauge
derivatives are evaluated relative to the gradient direction at every pixel. Like standard SURF descriptors, G-SURF descriptors are
fast to compute due to the use of integral images, but have extra matching robustness due to the extra invariance offered by gauge
derivatives. We present extensive experimental image matching results on the Mikolajczyk and Schmid dataset which show the
clear advantages of our family of descriptors against first-order local derivatives based descriptors such as: SURF, Modified-SURF
(M-SURF) and SIFT, in both standard and upright forms. In addition, we also show experimental results on large-scale 3D Structure
from Motion (SfM) and visual categorization applications.
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1. Introduction

Given two images of the same scene, image matching is the
problem of establishing correspondence and is a core compo-
nent of all sorts of computer vision systems, particularly in clas-
sic problems such as Structure from Motion (SfM) [1], visual
categorization [2] or object recognition [3]. There has been a
wealth of work in particular on matching image keypoints, and
the key advances have been in multiscale feature detectors and
invariant descriptors which permit robust matching even under
significant changes in viewing conditions.

We have studied the use of gauge coordinates [4] for image
matching and SfM applications and incorporated them into a
Speeded-Up Robust Features (SURF) [5] descriptor framework
to produce a family of descriptors of different dimensions which
we call Gauge-SURF (G-SURF) descriptors. With gauge coor-
dinates, every pixel in the image is described in such a way that
if we have the same 2D local structure, the description of the
structure is always the same, even if the image is rotated. This
is possible since multiscale gauge derivatives are rotation and
translation invariant. In addition, gauge derivatives play a key-
role in the formulation of non-linear diffusion processes, as will
be explained in Section3.1. By using gauge derivatives, we can
make blurring locally adaptive to the image itself, withoutaf-
fecting image details.

The G-SURF descriptors are very related to non-linear diffu-

sion [6, 7] processes in image processing and computer vision.
In the typical Gaussian scale-space [8] framework, details are
blurred during evolution (i.e. the convolution of the original
image with Gaussian kernels of increasing standard deviation).
The advantage of blurring is the removal of noise, but relevant
image structures like edges are blurred and drift away from their
original locations during evolution. In general, a good solution
should be to make the blurring locally adaptive to the image
yielding the blurring of noise, while retaining details or edges.
Instead of local first-order spatial derivatives, G-SURF descrip-
tors measure per pixel information about image blurring and
edge or detail enhancing, resulting in a more discriminative de-
scriptors.

We have obtained notable results in an extensive image
matching evaluation using the standard evaluation framework
of Mikolajczyk and Schmid [9]. In addition, we have tested
our family of descriptors in large-scale 3D SfM datasets [10]
and visual categorization experiments [2] with satisfactory re-
sults. Our results show that G-SURF descriptors outperformor
approximate state of the art methods in accuracy while exhibit-
ing low computational demands making it suitable for real-time
applications.

We are interested in robust multiscale feature descriptors, to
reliably match two images in real-time for visual odometry [11]
and large-scale 3D SfM [10] applications. Image matching
here, is in fact a difficult task to solve due to the large motion
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between frames and the high variability of camera movements.
For this purpose, we need desciptors that are fast to compute
and at the same time exhibit high performance.

In addition, we have done an open-source library called
OpenGSURFthat contains all the family of G-SURF descrip-
tors and is publicly available1. These family of descriptors com-
prises of several descriptors of different dimensions based on
second-order multiscale gauge derivatives. Depending on the
application some descriptors may be preferred instead of oth-
ers. For example, for real-time applications a low-dimensional
descriptor should be preferred instead of a high-dimensional
one, whereas for image-matching applications consideringse-
vere image transformations one can expect a higher recall byus-
ing high-dimensional descriptors. Up to the best of our knowl-
edge, this is the first open source library that allows the user
to choose between different dimensional descriptors. Current
open source descriptor libraries [12, 13] just have implementa-
tions for the standard SURF and Scale Invariant Feature Trans-
form (SIFT) [14] descriptors’ default dimensions (64 and 128
respectively). This can be a limitation and a computationalbot-
tleneck for some real-time applications that do not necessarily
need those default descriptor dimensions.

The rest of the paper is organized as follows: Related work
is described in Section2. Gauge coordinates are introduced
in Section3 and the importance of gauge derivatives in non-
linear diffusion schemes is reviewed in Section3.1. Then we
briefly discuss SURF based descriptors in Section4. The over-
all framework of our family of descriptors is explained in Sec-
tion5. Finally, we show extensive experimental results in image
matching, large-scale 3D SfM and visual categorization appli-
cations in Section6.

2. Related Work

The highly influential SIFT [14] features have been widely
used in applications from mobile robotics to object recognition,
but are relatively expensive to compute and are not suitablefor
some applications with real-time demands. Inspired by SIFT,
Bay et al. [5] proposed the SURF features both detector and
descriptor. SURF features exhibit better results than previous
schemes with respect to repeatability, distinctiviness and ro-
bustness, but at the same time can be computed much faster
thanks to the use of integral images [15]. Recently, Agrawal et
al. [16] proposed some modifications of SURF in both the de-
tection and description steps. They introduced Center Surround
Extremas (CenSurE) features and showed that they outperform
previous detectors and have better computational characteristics
for real-time applications. Their variant of the SURF descriptor,
Modified-SURF (M-SURF), efficiently handles the descriptor
boundary problem and uses a more intelligent two-stage Gaus-
sian weighting scheme in contrast to the original implementa-
tion which uses a single Gaussian weighting step.

All the mentioned approaches rely on the use of the Gaus-
sian scale-space [8] framework to extract features at different

1The source code can be downloaded from:http://www.robesafe.com/
personal/pablo.alcantarilla/code/opengsurf1 0.rar

scales. An original image is blurred by convolution with Gaus-
sian kernels of successively large standard deviation to identify
features at increasingly large scales. The main drawback ofthe
Gaussian kernel and its set of partial derivatives is that both in-
teresting details and noise are blurred away to the same degree.
It seems to be more appropriate in feature description to make
blurring locally adaptive to the image data so that noise will
be blurred, while at the same time details or edges will remain
unaffected. In this way, we can increase distinctiveness when
describing an image region at different scale levels. In spirit,
non-linear diffusion shares some similarities with respect to the
geometric blurproposed by Berg and Malik [17], in where the
the amount of Gaussian blurring is proportional to the distance
from the point of interest.

From their definition, gauge derivatives are local invariants.
Matching by local invariants has previously been studied inthe
literature. In [18], Schmid and Mohr used the family of lo-
cal invariants known aslocal jet [19] for image matching ap-
plications. Their descriptor vector contained 8 invariants up
to third order for every point of interest in the image. This
work supposed a step-forward over previous invariant recogni-
tion schemes [20]. In [9], Mikolajczyk and Schmid compared
the performance of thelocal jet (with invariants up to third or-
der) against other descriptors such as steerable filters [21], im-
age moments [22] or SIFT. In their experiments the local jet
exhibits poor performance compared to SIFT. We hypothesize
that this poor performance is due to the fixed settings used inthe
experiments, such as a fixed image patch size and a fixed Gaus-
sian derivative scale. In addition, invariants of high order are
more sensitive to geometric and photometric distortions than
first-order methods. In [23], the local jet was again used for
matching applications, and they showed that even a descriptor
vector of dimension 6 can outperform SIFT for small perspec-
tive changes. By a suitable scaling and normalization, the au-
thors obtained invariance to spatial zooming and intensityscal-
ing. Although these results were encouraging, a more detailed
comparison with other descriptors would have been desirable.
However, this work motivated us to incorporate gauge invari-
ants into the SURF descriptor framework.

Brown et al. [10], proposed a framework for learning dis-
criminative local dense image descriptors from training data.
The training data was obtained from large-scale real 3D SfM
scenarios, and accurate ground truth correspondences weregen-
erated by means of multi-view stereo matching techniques [24,
25] that allow to obtain very accurate correspondences between
3D points. They describe a set of building blocks for build-
ing discriminative local descriptors that can be combined to-
gether and jointly optimized to minimize the error of a nearest-
neighbor classifier. In this paper, we use the evaluation frame-
work of Brown et al. to evaluate the performance of multiscale
gauge derivatives under real large-scale 3D SfM scenarios.

3. Gauge Coordinates and Multiscale Gauge Derivatives

Gauge coordinates are a very useful tool in computer vision
and image processing. Using gauge coordinates, every pixelin
the image is described in such a way that if we have the same
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2D local structure, the description of the structure is always the
same, even if the image is rotated. This is possible since every
pixel in the image is fixed separately in its own local coordinate
frame defined by the local structure itself and consisting ofthe
gradient vector~w and its perpendicular direction~v:

~w =
(

∂L
∂x ,
∂L
∂y

)

= 1√
L2

x+L2
y

·
(

Lx, Ly

)

~v =
(
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·
(
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) (1)

In Equation1, L denotes the convolution of the imageI with a
2D Gaussian kernelg(x, y, σ), whereσ is the kernel’s standard
deviation or scale parameter:

L(x, y, σ) = I (x, y) ∗ g(x, y, σ) (2)

Derivatives can be taken up to any order and at multiple scales
for detecting features of different sizes. Raw image deriva-
tives can only be computed in terms of the Cartesian coordinate
framex andy, so in order to obtain gauge derivatives we need to
use directional derivatives with respect to a fixed gradientdirec-
tion (Lx, Ly). The~v direction is tangent to the isophotes or lines
of constant intensity, whereas~w points in the direction of the

gradient, thusLv = 0 andLw =

√

L2
x + L2

y. If we take deriva-

tives with respect to first-order gauge coordinates, since these
are fixed to the object, irrespective of rotation or translation, we
obtain the following interesting results:

1. Every derivative expressed in gauge coordinates is an or-
thogonal invariant. The first-order derivative∂L

∂~w is the
derivative in the gradient direction, and in fact the gradient
is an invariant itself.

2. Since∂L
∂~v = 0, this implies that there is no change in the

luminance if we move tangentially to the constant intensity
lines.

By using gauge coordinates, we can obtain a set of invariant
derivatives up to any order and scale that can be used efficiently
for image description and matching. Of special interest, are the
second-order gauge derivativesLww andLvv:

Lww =
L2

xLxx + 2 · LxLxyLy + L2
yLyy

L2
x + L2

y
(3)

Lvv =
L2

yLxx − 2 · LxLxyLy + L2
xLyy

L2
x + L2

y
(4)

These two gauge derivatives can be obtained as the product
of gradients in~w and~v directions and the 2× 2 second-order
derivatives or Hessian matrix.
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Lvv is often used as a ridge detector. Ridges are elongated
regions of approximately constant width and intensity, andat

these points the curvature of the isophotes is high.Lww gives
information about gradient changes in the gradient direction.

Figure 1(a) illustrates first-order gauge coordinates. Unit
vector~v is always tangential to lines of constant image inten-
sity (isophotes), while unit vector~w is perpendicular and points
in the gradient direction. Figure1(b) depicts an example of the
resulting second-order gauge derivativeLww on one of the im-
ages from the Mikolajczyk and Schmid’s standard dataset [9].

(a) (b)

Figure 1: (a) Local first-order gauge coordinates (b) Resulting gauge derivative
Lww applied on the first image of the Leuven dataset, at a fixed scaleσ = 2
pixels.

According to [26], where Schmid and Mohr explicitly de-
scribe the set of second-order invariants used in the local jet,
we can find two main differences between the second-order
gauge derivativesLww, Lvv and the local jet. The first differ-
ence is that by definition gauge derivatives are normalized with
respect to the modulus of the gradient at each pixel. Although
this normalization can be also included in the local jet formula-
tion as shown in [23]. The second difference and the most im-
portant one, is that the invariantLvv is not included in the set of
second-order derivatives of the local jet. The invariantLvv plays
a fundamental role in non-linear diffusion processes [7, 27].
Typically, Equation4 is used to evolve the image in a way
that locally adapts the amount of blurring to differential invari-
ant structure in the image in order to perform edge-preserving
smoothing [4].

3.1. Importance of Gauge Derivatives in Non-Linear Diffusion
Schemes

In this section we aim to throw some more light on our de-
cision to use gauge derivatives in a feature descriptor by briefly
reviewing non-linear image diffusion, and highlighting the im-
portant role of gauge derivatives in these schemes. Koenden-
rik [28] and Lindeberg [8] showed that the Gaussian kernel and
its set of partial derivatives provide the unique set of operators
for the construction of linear scale-space under certain condi-
tions. Some examples of algorithms that rely on the Gaussian
scale-space framework are SIFT [14] and SURF [5] invariant
features.

However, to repeat, details are blurred in Gaussian scale-
space during evolution. The advantage of blurring is the re-
moval of noise, but relevant image structures like edges are
blurred and drift away from their original locations duringevo-
lution. In general, a good solution should be to make the blur-
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ring locally adaptive to the image yielding the blurring of noise,
while retaining details or edges.

In the early nineties, several Partial Differential Equations
(PDEs) were proposed for dealing with the mentioned Gaussian
scale-space problem. Some famous examples are the Perona-
Malik equation [6] and the Mean Curvature Motion (MCM) [7].
Note that in general, non-linear diffusion approaches perform
better than linear diffusion schemes [4, 29]. Recently, Kuijper
showed in [29] that the evolution of an image can be expressed
as a linear combination of the two different second-order gauge
derivativesLww and Lvv. According to this, we can conclude
that non-linear approaches steer between blurringLww and edge
regularizingLvv. Some examples of practical applications of
Lww flow are image impaiting [30]. For Lvv flow an example
is the cited MCM [7]. Fig.2 depicts a comparison between the
Gaussian scale space and non-linear diffusion approaches.

Based on this, we can think about a local invariant descrip-
tor that takes into account the information encoded in the two
gauge derivativesLvv andLww while the image evolves accord-
ing to a scaleσ. Notice that in our family of descriptors we just
replace the first-order local derivativesLx andLy for the gauge
derivativesLvv andLww and do not perform any image evolution
through a non-linear scale space. That is, our descriptors will
measure information about blurring (Lww) and edge enhancing
(Lvv) for different scale levels.

Another difference between first-order local derivatives and
gauge ones, is that gauge derivatives are intrinsically weighted
with the strength of the gradientLw. That is, the weighting is
intrinsically related to the image structure itself, and noartifi-
cial weighting such as Gaussian weighting is needed. This is
an important advantage over other descriptors, such as for ex-
ample SURF, where different Gaussian weighting schemes [16]
have been proposed to improve the performance of the original
descriptor.

4. SURF Based Descriptors

Agrawal et al. proposed in [16] the Modified Upright-SURF
descriptor (MU-SURF) which is a variant of the original U-
SURF descriptor. MU-SURF handles descriptor boundary ef-
fects and uses a more robust and intelligent two-stage Gaus-
sian weighting scheme. For a detected feature at scales, Haar
wavelet responsesLx and Ly of size 2s are computed over a
24s × 24s region. This region is divided into 9s × 9s subre-
gions with an overlap of 2s. The Haar wavelet responses in each
subregion are weighted with a Gaussian (σ1 = 2.5s) centered
on the subregion center and summed into a descriptor vector
dv = (

∑

Lx,
∑

Ly,
∑

|Lx|,
∑

|Ly|). Then, each subregion vector
is weighted using a Gaussian (σ2 = 1.5s) defined over a mask
of 4 × 4 and centered on the interest keypoint. Finally, the de-
scriptor vector of length 64 is normalized into a unit vectorto
achieve invariance to contrast. Figure3(a) depicts the involved
regions and subregions in the MU-SURF descriptor building
process.

The main difference between the MU-SURF and U-SURF
descriptor is that the size of the region is reduced to 20s× 20s
divided into 5s× 5s subregions without any overlap between

subregions. In addition, Haar wavelet responses in each sub-
region are weighted by a Gaussian (σ = 3.3s) centered at the
interest keypoint. This is a very small standard deviation con-
sidering that the square grid size is 20s× 20s. Figure3(b) de-
picts a normalized 2D Gaussian kernel considering a standard
deviationσ = 3.3. Notice how this weighting scheme smoothes
completely the contribution of far points from the point of inter-
est. Therefore, only points within a distance of±5 pixels have
a significant influence in the whole descriptor.

The upright version of SURF-based descriptors (U-SURF)
is faster to compute and usually exhibits higher performance
(compared to its corresponding rotation invariant version,
SURF) in applications where invariance to rotation is not nec-
essary. Some examples of these applications are 3D reconstruc-
tion [5] or face recognition [31]. Although the MU-SURF de-
scriptor is not invariant to rotation, it can be easily adapted for
this purpose by interpolating Haar wavelet responses according
to a dominant orientation, in the same way as is done in the
orginal SURF descriptor. Then, for rotation invariant descrip-
tors the coordinates of the descriptor and the gradient orienta-
tions are rotated relative to the dominant keypoint orientation.

(a) (b)

Figure 3: (a) MU-SURF descriptor building process. All sizes are relative to the
scale of the feature s (b) The single Gaussian weighting scheme proposed in the
original SURF descriptor. Normalized 2D gaussian kernel values considering a
Gaussian kernel of standard deviationσ = 3.3 centered at the interest keypoint.
Best viewed in color.

5. Gauge-SURF Descriptors

Our family of G-SURF descriptors are based on the origi-
nal SURF descriptor. However, instead of using the local first-
order derivativesLx andLy, we replace these two derivatives by
the second-order gauge derivativesLww andLvv. For comput-
ing multiscale gauge derivatives, we always need to compute
the derivatives first in the Cartesian coordinate frame (x, y), and
then fix the gradient direction (Lx, Ly) for every pixel. After
these computations, we can obtain invariant gauge derivatives
up to any order and scale with respect to the new gauge coordi-
nate frame (~w,~v). Our descriptors formulation can be applied to
any multiscale feature detection method, since we always eval-
uate the multiscale gauge derivatives at the detected keypoint
scale, yielding a scale invariant description of the keypoint.

From the definition of gauge coordinates in Equation1, it
can be observed that these coordinates are not defined at pixel
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(a) (b) (c)

(d) (e) (f)

Figure 2: Gaussian scale-space versus Non-Linear diffusion schemes. The first row depicts the evolution of the sixthimage from the Mikolajczyk and Schmid’s
Bikes dataset considering a Gaussian scale space of increasing σ in pixels. (a)σ = 2 (b) σ = 4 (c) σ = 8. The second row depicts the evolution of the same
reference image but considering the MCM non-linear diffusion flow. (d)σ = 2 (e)σ = 4 (f) σ = 8. Notice how with non-linear diffusion schemes, details are
enhanced and noise is removed, whereas for the Gaussian scale-space, details and noise are blurred in the same degree.

locations where
√

L2
x + L2

y = 0, i.e. at saddle points and ex-

trema of the image. In practice this is not a problem as ter Haar
Romeny states in [4], since we have a small number of such
points, and according to Morse theory [32] we can get rid of
such singularities by infinitesimally small local changes in the
intensity landscape. What we do in practice is to not sum the
contributions of these points into the final descriptor vector.

Now, we will describe the building process of a GU-SURF
descriptor of dimension 64. For a detected feature at scale
s, we compute first and second-order Haar wavelet responses
Lx, Ly, Lxx, Lxy, Lyy over a 20s × 20s region. We callLx the
Haar wavelet response in the horizontal direction andLy the
response in the vertical direction. The descriptor window is di-
vided into 4×4 regular subregions without any overlap. Within
each of these subregions Haar wavelets of size 2s are com-
puted for 25 regularly distributed sample points. Once we
have fixed the gauge coordinate frame for each of the pix-
els, we compute the gauge invariants|Lww| and |Lvv|. Each
subregion yields a four-dimensional descriptor vectordv =

(
∑

Lww,
∑

Lvv,
∑

|Lww|,
∑

|Lvv|). Finally, the total length of the
unitary descriptor vector is 64.

Figure 4 depicts an example of the GU-SURF descriptor
building process. For simplicity reasons, we only show one
gauge coordinate frame for each of the 4× 4 subregions. Note
that if we want to compute a descriptor which is invariant to ro-
tation, we do not need to interpolate the value of the invariants
Lww andLvv according to a dominant orientation as in SURF or
M-SURF. Due to the rotation invariance of gauge derivatives,
we only have to rotate the square grid.

Figure 4: GU-SURF descriptor building process. Note that for the rotationally-
invariant version of the descriptor we just have to rotate the square grid.
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In the same way as proposed in SURF, we use box-filters
to approximate first and second-order Gaussian derivatives.
These box-filters are constructed through the use of integral im-
ages [15], which allows the approximation of Gaussian deriva-
tives with low computational demands.

In Section5.1, we describe the rest of descriptors of the G-
SURF family included in theOpenGSURFlibrary and the no-
tation of the descriptors we will use throughout the rest of the
paper.

5.1. Descriptors Notation

Similar to [5], we can modify the number of divisions of the
square grid and the size of each subregion in Figure4 to obtain
descriptors of different dimensions. The descriptor size has a
major impact on the matching speed and recall rates. We also
tested the extended version of the descriptors [5]. Due to space
limitations, we will not evaluate this version of the descriptors
in this paper. However, this option is included in the OpenG-
SURF library. As shown in [5], the overall effect of the ex-
tended descriptor is minimal.

Now, we will describe the notation for the set of descriptors
we use throughout the rest of the paper, with the number of
dimensions of the descriptors in parenthesis. For the SURF-
based descriptors the default dimension is 64, whereas for SIFT
the default dimension is 128.

• SURF (64): Original SURF implementation as described
in [33] that uses a single Gaussian weighting scheme of a
standard deviationσ = 3.3s centered at the interest key-
point and a square grid of 20s× 20s.

• M-SURF (64): Modified-SURF descriptor as described
in [16]. This descriptor uses a square grid of 24s× 24s
considering an overlap of Haar wavelets responses and two
Gaussian weighting steps.

• G-SURF (64): Gauge-SURF descriptor, that uses second-
order multiscale gauge derivatives and a square grid of
20s×20swithout any additional Gaussian weighting step.

• MG-SURF (64): Modified Gauge-SURF descriptor, that
uses the same scheme as the M-SURF but replacing first-
order local derivatives (Lx, Ly) for second-order gauge
ones (Lww, Lvv).

• NG-SURF (64): No Gaussian Weighting-SURF descrip-
tor. This descriptor is exactly the same as the original
SURF descriptor, with the difference that no Gaussian
weighting step is applied. In this way, we can perform a
fair comparison between gauge derivatives and first-order
local derivatives based descriptors without any additional
weighting scheme.

• SIFT (128): The SIFT descriptor as described in [14].
This descriptor has a dimension of 128.

For all the mentioned above descriptors, we denote theup-
right version of the descriptors (not invariant to rotation) adding

the prefix U to the name of the descriptor. For example, GU-
SURF is the upright version of the G-SURF descriptor. By
modifying the number of divisions of the square grid and the
size of each of the subregions, we can obtain descriptors of dif-
ferent dimensions. Now, we will describe the number of divi-
sions of the square grid and the size of each subregion for each
of the descriptor sizes we evaluate in this paper. The first num-
ber in parenthesis indicates the dimension of the descriptor with
the new square grid and subregion size.

• (36): Square grid of size 18s×18syielding 3×3 subregions
each of size 6s× 6s.

• (144): Square grid of size 24s× 24s yielding 6× 6 subre-
gions each of size 4s× 4s.

6. Results and Discussion

In this section, we present extensive experimental image
matching results obtained on the standard evaluation set of
Mikolajczyk and Schmid [9], large-scale 3D SfM applica-
tions [10] and visual categorization experiments [2]. In ad-
dition, we introduce a new dataset namedIguazuthat consist
of a series of six images with the addition of increasing ran-
dom Gaussian noise levels with respect to the first image of the
dataset. In some research areas such medical imaging, RADAR
or astronomy, images are usually corrupted by different types of
random noise. Therefore, we think that the evaluation of local
descriptors in these kind of datasets is of interest.

Our family of G-SURF descriptors implementation is based
on the OpenSURF library2. The source code of our library is at-
tached as supplementary paper material. OpenSURF is an open
source C++ based library with detailed documentation and a
reference paper [12]. To our knowledge, this library is widely
used in the computer vision and robotics community and ex-
hibits good performance, while having speed similar to the orig-
inal SURF library which is only available as a binary. Currently,
OpenSURF uses by default the M-SURF descriptor, since per-
formance is much higher than when using the single weighting
Gaussian scheme. We think, that OpenSURF is a good open
source library for performing an evaluation and comparisonof
a set of descriptors that are all based on the same source code
framework.

We also show comparison results with respect to SIFT de-
scriptor, using Vedaldi’s implementation [13]. In all SIFT ex-
periments we used the default magnification factorm = 3.0,
i.e. each spatial bin of the histogram has support of sizem · σ
whereσ is the scale of the point of interest. This parameter
has an important effect in descriptor performance. See [34] for
more details.

We have compared G-SURF descriptors to SURF, M-SURF,
NG-SURF (all based on OpenSURF implementation) and SIFT
(based on Vedaldi’s implementation), in both standard and up-
right forms. Agrawal et al. [16] claim that M-SURF’s perfor-
mance is similar to the original SURF library, although their im-
plementation is much faster than the original one. Like Agrawal

2Available from http://code.google.com/p/opensurf1/
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et al., we also noticed that the standard single Gaussian weight-
ing scheme as proposed in the original SURF algorithm [5]
gives poor results. However, we also include in our compari-
son the standard SURF method based on the OpenSURF im-
plementations, since this single Gaussian scheme is still used
in practically all of the open source libraries that includethe
SURF algorithm, such as OpenCV or dlib C++ 3. In addition,
in Section6.2 we also show some comparison results with re-
spect to the OpenCV SURF implementation, since this library
has become a de facto standard for fast-to-compute descriptors.

The rest of the experimental results and discussion sectionis
organized as follows: In Section6.1 we show extensive image
matching experiments based on the standard evaluation frame-
work of Mikolajczyk and Schmid [9], with the addition of a
new dataset for evaluating descriptor performance under dif-
ferent image noise settings. Then, in Section6.3 we evaluate
the performance of G-SURF descriptors in large-scale 3D SfM
scenarios. In Section6.4 we show some results on visual cat-
egorization applications, and finally in Section6.5we describe
some implementation details and timing evaluation results.

6.1. Image Matching Experiments
We tested our descriptors using the image sequences and

testing software provided by Mikolajczyk4. We used Open-
SURF’s Fast Hessian to extract the keypoints in every image
and then compute the descriptors, setting the number of octaves
and number of intervals to 4 and 2 respectively.

The standard dataset includes several image sets (each se-
quence generally contains 6 images) with different geometric
and photometric transformations such as image blur, lighting,
viewpoint, scale changes, zoom, rotation and JPEG compres-
sion. In addition, the ground truth homographies are also avail-
able for every image transformation with respect to the firstim-
age of every sequence. We show results on eight sequences
of the dataset. Table1 gives information about the datasets and
the image pairs we evaluated for each of the selected sequences.
We also provide the number of keypoints detected for each im-
age and the Hessian threshold value to permit reproduction of
our results.

Descriptors are evaluated by means ofrecall versus 1 - pre-
cisiongraphs as proposed in [9]. This criterion is based on the
number of correct matches and the number of false matches ob-
tained for an image pair:

recall = #correct matches
#correspondences

1− precision= # f alse matches
#all matches

(7)

The number of correct matches and correspondences is deter-
mined by the overlap error. Two regions (A, B) are deemed to
correspond if the overlap errorǫ0, defined as the error in the im-
age area covered by the regions, is sufficiently small, as shown
in Equation8:

ǫ0 < 1− A∩ HT · B · H
A∪ HT · B · H

(8)

3Available from http://dclib.sourceforge.net/
4Available from http://www.robots.ox.ac.uk/ṽgg/research/affine/

In [9] some examples of the error were shown in relative point
location and recall considering different overlap errors. They
found that for overlap errors smaller than 20% one can ob-
tain the maximum number of correct matches. In addition,
they showed that recall decreases with increasing overlap er-
rors. Larger overlap errors result in a large number of corre-
spondences and general low recall. Based on this, we decided
to use an overlap error threshold ofǫ0 < 20%, since we think
this overlap error is reasonable for SfM applications, where you
are only interested on very accurate matches. Furthermore,as
in [35] we also impose that the error in relative point location
for two corresponding regions has to be less than 2.5 pixels:
‖xa − H · xb‖ < 2.5, where H is the homography between the
images. Due to space limitations, we only show results on sim-
ilarity threshold based matching, since this technique is better
suited for representing the distribution of the descriptorin its
feature space [9].

Figure5 depictsrecall versus 1-precisiongraphs for the se-
lected pairs of images. This figure suggests the following con-
clusions:

• In general, among the upright evaluation of the descrip-
tors, GU-SURF descriptors perform much better than its
competitors, especially for high precision values, with
sometimes more than 20% improvement in recall for the
same level of precision with respect to MU-SURF (64) and
U-SIFT (128) (e.g. Leuven, Bikes and Trees datasets), and
even much more improvement with respect to U-SURF
(64). GU-SURF (144) was the descriptor that normally
achieved the highest recall for all the experiments, fol-
lowed close by GU-SURF (64). GU-SURF (36) also ex-
hibits good performance, on occasions even better than
higher dimensional descriptors such as U-SIFT (128) or
MU-SURF (64).

• In the upright evaluation of the descriptors, one can obtain
higher recall rates by means of descriptors that do not have
any kind of Gaussian weighting or subregions overlap. For
example, we can observe this behavior between NGU-
SURF (64) and U-SURF (64), where the only difference
between both descriptors is the Gaussian weighting step.
Furthermore, we can see that between GU-SURF (64) and
MGU-SURF (64), GU-SURF (64) obtained higher recall
values than when using the modified version of the de-
scriptors.

• With respect to the rotation invariant version of the de-
scriptors, in these cases, the modified descriptor version
plays a more important role. The use of two Gaussian
weighting steps and subregions overlap, yield a more ro-
bust descriptor against large geometric deformations and
non-planar rotations. In addition, the Gaussian weight-
ing helps in reducing possible computation errors when
interpolating Haar wavelets responses according to a dom-
inant orientation. This interpolation of the responses, is
not necessary in the case of gauge derivatives, since by
definition they are rotation invariant. We can observe
that MG-SURF (64) obtained slightly better results com-
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Dataset Image Image N # Keypoints # Keypoints Hessian
Change Image 1 Image N Threshold

Bikes Blur 4 2275 1538 0.0001
Bikes Blur 5 2275 1210 0.0001
Boat Zoom+Rotation 4 2676 1659 0.0001

Graffiti Viewpoint 2 1229 1349 0.001
Leuven Illumination 4 2705 2143 0.00001
Trees Blur 3 3975 4072 0.0001
UBC JPEG Compression 5 2106 2171 0.0001

Van Gogh Rotation 10 864 782 0.00005
Van Gogh Rotation 18 864 855 0.00005

Wall Viewpoint 3 3974 3344 0.0001
Iguazu Gaussian Noise 3 1603 2820 0.0001
Iguazu Gaussian Noise 4 1603 3281 0.0001
Iguazu Gaussian Noise 5 1603 3581 0.0001

Table 1: Sequences and image pairs used for image matching experiments: Image change, image number, keypoints number and Hessianthreshold value.

(a) (b) (c)

(d) (e) (f)

Figure 5: Image matching experiments: Recall versus 1-precision graphs, Similarity threshold based matching. (a) Bikes 1 vs4 (b) Boat 1 vs 4 (c) Leuven 1 vs 5
(d) Trees 1 vs 3 (e) UBC 1 vs 5 (f) Wall 1 vs 3. Best viewed in color.
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pared to M-SURF (64) and SIFT (128) for the Boat dataset
(Zoom+Rotation). For the Wall dataset (changes in view-
point), SIFT (128) was the descriptor that obtained better
results, and MG-SURF (64) obtained better results com-
pared to M-SURF (64), especially for high precision val-
ues.

• When comparing gauge-based descriptors and first-order
local derivatives descriptors, we can observe that gauge-
based descriptors always obtained higher recall values,
both in the standard and upright form of the descriptors.
We can observe this behaviour between G-SURF (64) ver-
sus NG-SURF (64), and MG-SURF (64) versus M-SURF
(64) and also considering the upright version of the de-
scriptors. One of the reasons why gauge derivatives ob-
tained better performance is because they are intrinsically
weighted by the strength of the gradientLw per pixel, and
thus the resulting descriptor exhibits a higher discrimina-
tive power.

• In all the sequences the worst results were obtained by the
OpenSURF’s SURF implementation, which uses the sin-
gle Gaussian weighting scheme that gives poor results.

6.1.1. Evaluation under image noise transformations
In this section, we evaluate the performance of the descrip-

tors under image noise transformations. For this purpose, we
created a new dataset namedIguazu. This dataset consists of
6 images, and the image transformation in this case is the pro-
gressive addition of random Gaussian noise. For each pixel of
the transformed images, we add random Gaussian noise with
increasing variance considering gray scale value images. The
noise variances for each of the images are the following: Image
2 ±2.55, Image 3±12.75, Image 4±15.00, Image 5±51.0 and
Image 6±102.00, considering that the gray value of each pixel
in the image ranges from 0 to 255. This new dataset is available
as supplementary paper material. Noisy images are very com-
mon in fields such as biomedical imaging [4] and other research
areas such as Synthetic Aperture RADAR imaging (SAR) [36].
We think that for these applications, a descriptor which is ro-
bust to different noise settings is very desirable. Figure6 de-
picts three images of the Iguazu dataset for image random noise
transformations, and therecall versus 1-precisionfor three im-
age pairs of the sequence.

According to the graphs, we can observe than for this dataset,
the difference between gauge-derivatives and first-order local
derivatives based descriptors is much more important than for
the previous image transformations evaluation. The best re-
sults were obtained again with the GU-SURF (144) descrip-
tor. In this experiment, U-SIFT (128) obtained also good re-
sults, with higher recall values than MU-SURF (64), U-SURF
(64) and NGU-SURF (64). Notice that in these experiments,
GU-SURF (36) obtained better results for the three image pairs
than MU-SURF (64), U-SURF (64) and NGU-SURF (64).
This is remarkable, due to the low dimension of the descrip-
tor, and this clearly stands out the discriminative properties of
gauge derivatives against first-order ones. The main reasonwhy

G-SURF descriptors exhibit good performance against image
noise settings and higher recall rates compared to first-order lo-
cal derivatives methods, is because G-SURF descriptors mea-
sure information about the amount of blurring (Lww) and details
or edge enhancing (Lvv) in the image at different scale levels.

6.1.2. Evaluation under pure rotation sequences
One of the nicest properties of gauge derivatives, is their in-

variance against rotation. In this section, we compare G-SURF
descriptors against first-order local derivatives descriptors, to
stand out the rotation invariance properties of gauge derivatives.
For this purpose, we decided to use the Van Gogh sequence that
consists on pure rotation image transformations. This sequence
and the ground truth homographies relating the images can be
downloaded from Mykolajczyk’s older webpage5. In order to
show the performance of G-SURF descriptor under pure rota-
tion transformation, we evaluated two image pairs from the Van
Gogh sequence. Figure7 depicts the reference image and the
rest two images that are related by a pure rotation of 45◦ and
180◦ with respect to the reference image.

(a) Image 2 (b) Image 8 (c) Image 18

Figure 7: Van Gogh rotation dataset. Images 2 and 8 are relatedby a pure
rotation of 45◦, whereas Images 2 and 18 are related by a pure rotation of 180◦.

Figure8 depicts therecall versus 1-precisionfor the selected
image pairs from the Van Gogh dataset. In this experiment, we
compared only G-SURF (64) versus NG-SURF (64) and SURF
(64). According to the results, we can observe that for some
points in the graphs, by using G-SURF (64), there is an im-
provement in recall about the 20% with respect to NG-SURF
(64) and approximately the double, 40%, with respect to SURF
(64) for the same precision values. This improvement in re-
call also happens when considering rotations of 45◦ where it is
known that there are some quantization effects due to the Haar-
wavelet responses [37]. These results make the effect of the
nice rotation invariance property of gauge-derivatives stand out
when matching the capabilities of the descriptors. Notice that
even though gauge derivatives are rotation invariant, we need
the main orientation of the keypoint to determine to which de-
scriptor bins each sample contributes. However, the G-SURF
descriptor is more robust to noisy orientation estimates than
SURF due to the gauge derivatives rotation invariant property.

6.2. Comparison to OpenCV

In this section, we also compare our G-SURF descriptors
with the latest OpenCV6 implementation of the SURF descrip-
tor. According to [38], OpenCV’s SURF implementation has

5http://lear.inrialpes.fr/people/mikolajczyk/Database/rotation.html
6Available from http://sourceforge.net/projects/opencvlibrary/
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(a) (b) (c)

(d) (e) (f)

Figure 6: In the first row (a,b,c), we show some images from the Iguazu dataset, with incrementally increasing random Gaussian noise values per image. Notice that
when severe random noise is added to the image, the number of detected blobs increases, mainly at small scales. The detected keypoints are shown in red or blue
depending on the sign of the Laplacian. (a) Iguazu 1 (b) Iguazu 3 (c) Iguazu 5. In the second row (d,e,f), Image matching experiments: Recall versus 1-precision
graphs, Similarity threshold based matching. (d) Iguazu 1 vs 3(e) Iguazu 1 vs 4 (f) Iguazu 1 vs 5. Best viewed in color.

(a) (b)

Figure 8: Image matching experiments: Recall versus 1-precision graphs, Sim-
ilarity threshold based matching. (a) Van Gogh 2 vs 8 (b) Van Gogh 2 vs 18.
Best viewed in color.

become a de facto standard for fast-to-compute descriptors.
However as we will show in our results, the descriptor per-
formance is poor and much lower compared to the default
OpenSURF’s M-SURF descriptor. This low performance is
because the SURF implementation in OpenCV uses also the
single Gaussian weighting scheme as proposed in the original
SURF paper [5].

Figure9 depictsrecall versus 1-precisiongraphs for two im-
age pairs from the Bikes and Graffiti datasets. In this experi-
ment, we compare G-SURF (64) with respect to M-SURF (64),
SURF (64) and CV-SURF (64) both in the upright and standard
forms of the descriptors. We denote by CV-SURF, the OpenCV
implementation of the SURF descriptor using the single weight-

ing scheme as described in Section4. According to the results,
we can see that the OpenCV implementation gives poor results,
comparable to SURF (64) OpenSURF’s implementation, since
both algorithms use the mentioned single Gaussian weighting
scheme. We can appreciate a huge difference in recall with re-
spect to G-SURF (64) and M-SURF (64).

(a) (b)

Figure 9: Image matching experiments: Recall versus 1-precision graphs, Simi-
larity threshold based matching. (a) Bikes 1 vs 5 (b) Graffiti 1 vs 2. Best viewed
in color.

6.3. Application to 3D Structure from Motion

In this section, we evaluate the performance of G-SURF
based descriptors in large-scale 3D SfM applications. In par-
ticular, we use the learning local image descriptors dataset
from [10]. In the mentioned work, Brown et al. proposed
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a framework for learning dense local image descriptors from
training data using 3D correspondences from large-scale SfM
datasets. For generating ground truth image correspondences
between real interest points, the authors used multi-view stereo
matching techniques [24, 25] that allow to obtain very accurate
correspondences between 3D points.

The available dataset consists on several scale and orienta-
tion normalized 64×64 image patches centered around detected
Harris corners or Difference of Gaussian (DoG) [14] features.
Those patches were extracted from real 3D points of large-scale
SfM scenarios. In our evaluation, we used 40,000 patch pairs
centered on detected Harris corners from which the 50% are
match pairs and the rest 50% are considered non-match pairs.
We attach the set of matches/non-matches image patches used
for the evaluation as a supplementary material of the paper.In
the evaluation framework of Brown et al., two patches are con-
sidered to be a match if the detected interest points are within
5 pixels in position, 0.25 octaves in scale andπ/8 radians in
angle. Figure10 depicts some of the pre-defined match, non-
match pairs from the Liberty dataset.

(a) (b)

Figure 10: Some of the predefined match, non-match pairs from theLiberty
dataset. Each row shows 3 pairs of image patches and the two image patches in
each pair are shown in the same column. (a) Match pairs (b) Non-match pairs.

We performed an evaluation of the upright version of the
descriptors U-SURF (64), MU-SURF (64), GU-SURF (64),
MGU-SURF (64), NGU-SURF (64) and U-SIFT (128) for both
the Liberty and Notre Dame datasets. We chose a scale of 2.5
pixels to make sure that no Haar wavelet responses were com-
puted outside the bounds of the image patch. For all the image
pairs in the evaluation set, we computed the distance between
descriptors and by means of sweeping a threshold on the de-
scriptor distance, we were able to generate ROC curves. Fig-
ure11 depicts the ROC curves for the Liberty dataset, whereas
Figure12depicts the ROC curves for the Notre Dame dataset.

In addition, in Table2 we also show results in terms of the
95% error rate which is the percent of incorrect matches ob-
tained when the 95% of the true matches are found.

Descriptor Liberty Notre Dame
GU-SURF (64) 19.78 18.95

MGU-SURF (64) 12.55 10.19
NGU-SURF (64) 22.95 25.22
MU-SURF (64) 16.88 13.17
U-SURF (64) 36.49 34.18
U-SIFT (128) 21.92 17.75

Table 2: Local image descriptors results. 95% error rates, with the number of
descriptor dimension in parenthesis.

Figure 11: ROC curves for local image descriptors. Liberty dataset. Best
viewed in color.

Figure 12: ROC curves for local image descriptors. Notre Dame dataset. Best
viewed in color.
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According to the results, we can observe that the lowest in-
correct match fraction rate for the 95% recognition rates was
obtained by the MGU-SURF (64) descriptor. This descriptor
uses the same square grid configuration, two Gaussian weight-
ing steps and subregions overlap as proposed in [16] for the
MU-SURF descriptor. In typical large-scale 3D SfM scenarios,
there exist non-planar transformations and illumination changes
resulting from viewing a truly 3D scene [10]. In addition,
second-order derivatives are more sensitive to perspective or
affine changes than first-order ones. Therefore, in those scenar-
ios where the affine changes or changes on perspective are sig-
nificant, the two-steps Gaussian weighting and subregions over-
lap seem to have a good effect on the descriptor performance.
This is the reason why in this evaluation we obtained better
results for MGU-SURF (64) and MU-SURF (64) against GU-
SURF (64) and NGU-SURF (64), that do not use any kind of
subregion overlap or Gaussian weighting steps. U-SIFT (128)
also obtained good results, always better than NGU-SURF (64)
and very similar results compared to GU-SURF (64), slightly
better for the Notre Dame dataset. U-SIFT (128) also uses
bilinear interpolation between the bins of the descriptor his-
togram [14]. When comparing, gauge-derivatives based de-
scriptors and first-order local derivatives ones, without any sub-
region overlap nor any Gaussian weighting step, we can observe
that GU-SURF (64) obtained much better results than NGU-
SURF (64). As expected, the worst results were obtained for
the U-SURF (64) descriptor, since in this descriptor configura-
tion the single Gaussian weighting step smoothes in a very high
degree the descriptor information, yielding in lower recognition
rates.

Besides, in the OpenGSURF library, the user can choose
between the SIFT-style clipping normalization and unit vector
normalization of the descriptor. This normalization can a have
a big impact on the matching performance of the descriptors,
as demonstrated in [39, 10], where one can obtain lower error
rates considering the SIFT-style clipping normalization.How-
ever, in order to avoid the influence of this normalization style
in our results, we just show results using the standard unit vec-
tor normalization, except for the SIFT descriptor, in whichwe
use its default SIFT-style clipping normalization.

6.4. Application to Visual Categorization Problems

In this experiment, we show that G-SURF based descriptors
can be used efficiently in typical visual image categorization or
object recognition problems. Bay et al. have shown in previous
works [40, 33, 5] that SURF-based descriptors can be used effi-
ciently in these kind of applications. Nowadays, SURF or SIFT
invariant descriptors are of common use in typical visual cate-
gorization or object recognition schemes [2]. In a similar way
to [41], we performed our tests considering the Caltech faces,
airplanes and camels dataset7. Firstly, we resized all the images
to a 640×480 resolution and selected the 25% of all the images
(randomly distributed among the three categories) for training.
The rest of the images was used for test evaluation.

7http://www.vision.caltech.edu/html-files/archive.html

Even though this is a simple visual categorization prob-
lem, we want to evaluate if G-SURF based descriptors can ex-
hibit higher recognition rates than traditional first-order spatial
derivatives based approaches due to the extra invariance offered
by using gauge derivatives. Figure13depicts three image pairs
of the different categories that we used in our evaluation. In
particular, we can expect a higher confusion between the faces
and camels categories. This is because in some images of the
camels dataset we can observe some human faces as shown for
example in Figure13(f), and also that camel and human faces
share some degree of similarity.

(a) (b) (c)

(d) (e) (f)

Figure 13: Three pairs of images from the Caltech dataset. (a,d) Faces (b,e)
Airplanes (c,f) Camels. Notice the possible confusion between the faces and
camels categories.

In order to perform an evaluation of the different local de-
scriptors, we used our own implementation of the visual bag
of keypoints method described in [2]. This implementation has
been successfully tested before in an occupant monitoring sys-
tem based on visual categorization [42]. Basically, we used
the standard Fast-Hessian detector to detect features of interest
at different scale levels, and then we computed different local
descriptors. In this experiment, we only show a comparison be-
tween 64 dimensional descriptors in its upright form (U-SURF,
MU-SURF, GU-SURF, NGU-SURF). Once the descriptors are
extracted, the visual vocabulary is constructed by means ofthe
standardk-meansclustering scheme [43]. This clustering algo-
rithm proceeds by iterated assignments of keypoints descriptors
to their closest cluster centers and recomputation of the cluster
centers. The selection of the number of clusters and the initial-
ization of the centers are of great importance in the performance
of the algorithm. Finally, the visual categorization is done by
using a simple N̈aive Bayes classifier [44]. In order to reduce
the influence of the clustering method on the final results, we
decided to use a small number of clustersk = 20 and performed
a random initialization of the cluster centers. To avoid cluster
initialization problems, the clusters were randomly initialized
ten times in each of the experiments, reporting categorization
results just for the cluster initialization that obtained minimum
compactness measure.

Tables3, 4, 5 and6 show information about the performance
of each of the different descriptors in the test evaluation. Simi-
lar to [2], we used three performance measures to evaluate the
performance on visual categorization: the confusion matrix, the
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overall error rate and the mean ranks. For more information
about the meaning of these performance measures, we recom-
mend the reader to check the experiments section in [2].

True Classes Faces Airplanes Camels
Faces 82.6531 0.8714 19.0000

Airplanes 1.3605 91.5033 12.0000
Camels 15.9864 7.6252 69.0000

Mean Ranks 1.1973 1.1154 1.3100

Overall Error Rate 0.1352

Table 3: Confusion matrix, mean ranks and overall error rate for U-SURF (64).

True Classes Faces Airplanes Camels
Faces 79.2517 0.3267 25.5000

Airplanes 0.6802 93.6819 7.0000
Camels 20.0680 5.9912 67.5000

Mean Ranks 1.2142 1.0824 1.3250

Overall Error Rate 0.1303

Table 4: Confusion matrix, mean ranks and overall error rate for MU-SURF
(64).

True Classes Faces Airplanes Camels
Faces 85.3741 0.2178 22.5000

Airplanes 0.3401 91.8301 5.5000
Camels 14.2857 7.9520 72.0000

Mean Ranks 1.1564 1.1132 1.2800

Overall Error Rate 0.1232

Table 5: Confusion matrix, mean ranks and overall error rate for GU-SURF
(64).

With respect to the confusion matrix, we can observe that
GU-SURF (64) descriptor obtained higher recognition ratesfor
the faces (85.3741%) and camels (72.0000%) categories. How-
ever, the MU-SURF (64) descriptor obtained a higher recogni-
tion rate for the airplanes (93.68%) dataset. In the same way,
GU-SURF (64) obtained the lowest mean ranks for the faces
(1.1564) and camels (1.2800) datasets and MU-SURF (64) ob-
tained the lowest one for the airplanes dataset (1.0824). Regard-
ing the overall error rate, GU-SURF (64) was the descriptor that
achieved the lowest error (0.1232). There is a reduction in the
overall error rate of the 8.88% with respect to U-SURF (64),
5.45% with respect to MU-SURF (64) and 2.22% with respect
to NGU-SURF (64). Even though the experimental evaluation
was a simple visual categorization problem, we can conclude
that G-SURF based descriptors can be used efficiently in these
visual recognition schemes. In addition, G-SURF descriptors
can also obtain lower error rates and higher recognition rates
than traditional approaches that are based only on first-order
local derivatives.

True Classes Faces Airplanes Camels
Faces 80.6122 0.3267 20.0000

Airplanes 1.36054 93.3551 10.0000
Camels 18.0272 6.31808 70.0000

Mean Ranks 1.2074 1.0882 1.3

Overall Error Rate 0.1260

Table 6: Confusion matrix, mean ranks and overall error rate for NGU-SURF
(64).

6.5. Implementation Details and Timing Evaluation

In this section, we describe some implementation details of
G-SURF descriptors and perform a timing evaluation. One of
the criticisms about using second-order derivatives in thecon-
text of local descriptors, is the higher computational costthat
sometimes is not accompanied by a better performance. In
this section, we show that by means of using gauge derivatives
we can obtain much better performance than first-order based
methods with comparable computational cost. Table7 shows
timing results for descriptor computation and also the number
of the most important operations in the process of building the
upright SURF based descriptors. All timing results were ob-
tained on an Intel i7 2.8GHz computer.

In Table 7, the number of integral image areas means the
number of areas that we have to obtain in order to compute the
descriptor. Based on OpenSURF’s implementation details [12],
one can estimate first-order Haar waveletsLx, Ly with just the
difference of two areas of the integral image for each of the first-
order wavelets. For each of the second-order Haar wavelets
Lxx, Lyy it is necessary to compute two areas of the integral im-
age and sum these areas in a proper way. Finally, the most
consuming Haar wavelet isLxy, since it requires the compu-
tation of 4 areas of the integral image. For example, for the
U-SURF (64) case, the total number of areas of the integral im-
age that we need to compute is: (4×4) · (5×5) · (2+2) = 1600.
Due to the extra-padding of 2s, the MU-SURF (64) case yields:
(4×4)·(9×9)·(2+2) = 5184. On the other hand, the GU-SURF
(64) case yields: (4×4)· (5×5)· (2+2+2+2+4) = 4800. How-
ever, the core observation is that for the GU-SURF (64) descrip-
tor one can obtain substantial speed-up for those points in the
rectangular grid where the gradient is equal to zero. For those
cases we do not need to compute the second-order wavelets,
since gauge coordinates are not defined for these points. This
corresponds to regions of the images of equal value, and there-
fore these regions are non-Morse.

Using the same settings as described in Table1, we can show
the fraction of non-Morse points among all the points where
Haar wavelets were evaluated. For example, for the following
images the ratio is: Leuven Image 1 (17.96%), Bikes Image
1 (17.73%) and Iguazu Image 1 (32.43%). Another computa-
tional advantage of the G-SURF descriptor is that it is not nec-
essary to interpolate the Haar wavelet responses with respect
to a dominant orientation, since gauge derivatives are rotation
invariant.

As explained above, the number of operations for U-SURF
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Case U-SURF MU-SURF MGU-SURF GU-SURF GU-SURF GU-SURF
Dimension 64 64 64 36 64 144

# First-Order Wavelets 800 2592 2592 648 800 1152
# Second-Order Wavelets 0 0 3888 972 1200 1728

# Gaussian Weights 800 2608 2608 0 0 0
Square area 20× 20 24× 24 24× 24 18× 18 20× 20 24× 24

# Integral Image Areas 1600 5184 15552 3888 4800 6912
Time (ms) 0.03 0.16 0.30 0.06 0.07 0.10

Table 7: Descriptor Building Process: Number of operations,square area and average computation time per descriptor keypoint.

(64) is the smallest, yielding a small computation time per de-
scriptor, but the performance is the worst compared to the other
SURF-based cases. NGU-SURF (64) descriptor has similar
computation times than the U-SURF descriptor, with the ad-
vantage that no Gaussian weighting operations are necessary
and exhibiting much better performance. The modified version
of the descriptors introduces more computations in the descrip-
tor building process, since the square area is 24s× 24s. This
yields higher computation times per descriptor. In particular,
for the MGU-SURF (64) descriptor, the number of integral im-
age areas is the highest (15552), and also the associated com-
putation time per descriptor (0.30 ms). However, this descriptor
only offers small advantages in performance against GU-SURF
(36), GU-SURF (64) and GU-SURF (144) when we have se-
quences with strong changes in viewpoints and non-planar ro-
tations (e.g. Wall, Graffiti, Liberty and Notre Dame datasets).
In addition, GU-SURF (36), GU-SURF (64) and GU-SURF
(144) are faster to compute than MU-SURF (64) and also ex-
hibit much better performance. For the U-SIFT (128) descrip-
tor, we obtained an average computation time per keypoint of
0.42 ms. Besides, for any SIFT-based descriptor one needs to
compute the Gaussian scale space since the gradients are pre-
computed for all levels of the pyramid [14]. Pre-computing the
scale space is a highly consuming task in contrast to the fast
integral image computation. We obtained a computation time
of 186 ms for the SIFT scale space generation, whereas for the
SURF integral image we obtained 2.62 ms. For the CVU-SURF
case, we obtained an average computation time per keypoint of
0.05 ms.

According to these results, it is clear that image matching us-
ing the G-SURF descriptors can be accomplished in real-time,
with high matching performance. For example, we think that
GU-SURF (36) and GU-SURF (64) are of special interest to be
used efficiently in real-time SfM and SLAM applications due to
excellent matching performance and computational efficiency.

7. Conclusions

We have presented a new family of multiscale local descrip-
tors, a novel high performance SURF-inspired set of descrip-
tors based on gauge coordinates which are easy to implement
but are theoretically and intuitively highly appealing. Image
matching quality is considerably improved relative to standard
SURF and other state of the art techniques, especially for those

scenarios where the image transformation is small in terms of
change in viewpoint or the image transformation is related to
blur, rotation, changes in lighting, JPEG compression or ran-
dom Gaussian noise. Our upright descriptors GU-SURF (64)
and GU-SURF (36) are highly suited to SfM and SLAM ap-
plications due to excellent matching performance and compu-
tational efficiency. Furthermore, the rotation invariant form of
the descriptors is not necessary in applications where the cam-
era only rotates around its vertical axis, which is the typical
case of visual odometry [11, 45] or SLAM [46] applications.
We also showed successful results of our family of descriptors
in large-scale 3D SfM applications and visual categorization
problems.

Another important conclusion that we showed in this paper,
is that descriptors based on gauge-derivatives can exhibitmuch
higher performance than first-order local derivatives based de-
scriptors. This is possible, due to the extra invariance offered by
gauge-derivatives and also our G-SURF descriptors have com-
parable computational cost with respect to other approaches.

As future work we are interested in testing the usefulness of
G-SURF descriptors for more challenging object recognition
tasks (e.g. The PASCAL Visual Object Classes Challenge). In
addition, we also plan to incorporate our descriptors into real-
time SfM applications and evaluate them in loop closure detec-
tion problems such as in [47]. Future work will aim at optimiz-
ing the code for additional speed up and also we will exploit
the use of gauge coordinates in the detection of features in non-
linear scale spaces. Moreover, we would like to introduce our
gauge-based descriptors on a DAISY-like framework [48] for
performance evaluation on different computer vision applica-
tions.

According to the obtained results and other successful ap-
proaches such asgeometric blur, we hope that in the next future
we can break with the standard scale-space paradigm in com-
puter vision algorithms. In the standard scale-space paradigm
the true location of a boundary at a coarse scale is not directly
available in the coarse scale image. The reason for this is simply
because Gaussian blurring does not respect the natural bound-
aries of objects. We believe that introducing new invariantfea-
tures that fully exploit non-linear diffusion scale spaces (both in
detection and local description of features) can representstep
forward improvements on traditional image matching and ob-
ject recognition applications.
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