
Large-Scale Dense 3D Reconstruction from Stereo Imagery

Pablo F. Alcantarilla, Chris Beall and Frank Dellaert

Abstract— In this paper we propose a novel method for large-
scale dense 3D reconstruction from stereo imagery. Assuming
that stereo camera calibration and camera motion are known,
our method is able to reconstruct accurately dense 3D models
of urban environments in the form of point clouds in near real-
time. We take advantage of recent stereo matching techniques
that are able to build dense and accurate disparity maps
from two rectified images. Then, we fuse the information
from multiple disparity maps into a global model by using
an efficient data association technique that takes into account
stereo uncertainty and performs geometric and photometric
consistency validation in a multi-view setup. Finally, we use
efficient voxel grid filtering techniques to deal with storage
requirements in large-scale environments. In addition, our
method automatically discards possible moving obstacles in the
scene. We show experimental results on real video large-scale
sequences and compare our approach with respect to other
state-of-the-art methods such asPMVS and StereoScan.

I. I NTRODUCTION

Structure from Motion (SfM) and visual Simultaneous
Localization and Mapping (vSLAM) algorithms [1, 13] aim
to recover a sparse 3D reconstruction and the estimated
camera poses in large-scale environments. These methods
track features between different frames and optimize 3D
structure and camera poses in a nonlinear optimization which
incorporates the geometric multi-view constraints between
3D structure, camera poses and image measurements. This
nonlinear optimization problem is normally solved by using
bundle adjustment variants [11].

Sparse 3D models do not provide enough detail to fully
appreciate the underlying structure of the environment. To
this end, there have been various efforts towards automated
dense 3D reconstruction in the last few years [9, 16, 4,
5, 15, 7]. Automated dense 3D modeling facilitates scene
understanding and has countless applications in differentar-
eas such as augmented reality, cultural heritage preservation,
autonomous vehicles and robotics in general.

One of the key ingredients in dense 3D reconstruction
methods isMulti-View Stereo (MVS) [18]. MVS algorithms
can be roughly classified into four different categories:de-
formable polygonal meshes [3], requiring a visual hull model
as an initialization;voxel-based [15], requiring a bounding
box that contains the scene and the accuracy is limited by the
voxel grid size;patch-based [4], requires reconstruction of
a collection of multiple small surface patches, andmultiple
depth maps [9, 16, 7], that demands fusing multiple maps
into a single global model. As mentioned in [4], MVS
algorithms can also be thought of in terms of the datasets they
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Fig. 1. Details (a) and aerial view (b) of dense 3D reconstruction results
for a sequence of 2.2 Km and 2760 frames. The number of reconstructed
3D points is 5,770,704.

can handle: a single object, large-scale scenarios, crowded
environments, etc. The choice of a particular MVS algorithm
highly depends on the type of dataset and application of
interest.

In this paper, we are interested in dense 3D reconstruction
of large-scale environments using stereo imagery from a
moving platform. We focus on the scenario of a stereo
camera mounted on a vehicle or a robot exploring a large
scene such as the one depicted in Figure 1. Large-scale
environments pose new challenges to the dense 3D recon-
struction problem such as large storage requirements and
computational complexity.

We propose a novel MVS approach that efficiently com-
bines the best of previous MVS approaches for our target
application. Instead of fusing raw disparity maps from each
stereo frame (which invariably yields large storage require-
ments), we use the dense disparity maps as an initialization
for a patch-based surface reconstruction considering multi-
ple views. In this way, taking advantage of the flexibility
of patch-based methods, we can check for geometric and
photometric consistency of each individual patch, which



facilitates discarding moving objects from the final recon-
struction. Then, we use efficient voxel grid filtering to down-
sample the dense point cloud for dealing with large storage
requirements.

Our algorithm makes the assumption that the stereo rig
calibration and camera motion are already known. Stereo
calibration can be obtained offline, while camera motion
can be obtained either online by incremental egomotion
estimation methods such as visual odometry [7] or with an
offline bundle adjustment optimization including loop closure
constraints. Our algorithm has the following advantages:

• Exploits dense disparity maps using efficient stereo
matching.

• Performs efficient data association, checking for ge-
ometric and photometric consistency in a multi-view
setup taking into account the uncertainty of stereo
measurements.

• Handles large storage requirements due to the use of
voxel grid filtering techniques.

• Is able to reject outliers and moving objects or obstacles
in the scene.

• It is faster than state-of-the-art techniques.
The rest of the paper is organized as follows: In Section II

we describe the related work. Then, we briefly introduce
stereo vision and uncertainty formulation in Section III. Our
dense 3D reconstruction algorithm is explained in detail in
Section IV. Finally, experimental results and conclusionsare
presented in Section V and VI respectively.

II. RELATED WORK

One of the most popular MVS techniques is the patch-
based approach also known as PMVS [4]. This method builds
a dense 3D reconstruction of a scene based on collections
of multiple small surface patches. PMVS basically consists
of three different steps: feature matching, expansion and
filtering. In the matching step, a sparse 3D reconstruction
of the scene is obtained from a set of 2D features. Then, in
the expansion step, this sparse 3D point cloud is densified
by an iterative procedure that estimates patch geometry by
minimizing a photometric cost function. Finally, outliersare
removed in the filtering step. PMVS is able to handle moving
objects thanks to the photometric consistency check between
different images. The main limitation of PMVS is that it
is computationally very expensive due mainly to the patch
expansion step. For large-scale scenarios, such as the ones
we are interested in, PMVS would require several days to
obtain dense 3D reconstructions even when using efficient
clustering techniques for the set of input images [5].

Pollefeyset al. [16] presented an efficient approach for
real-time 3D reconstruction from video of urban scenes.
Their approach considers a system equipped with 8 cameras
plus GPS/INS data mounted on a moving car, exploiting par-
allelization and GPU processing. They use plane-sweeping
stereo [2] as a stereo matcher for obtaining dense disparity
maps from different views. Then, multiple depth maps are
fused into a single global model by exploiting visibility
information.

Recently, Newcombeet al. presented an impressive voxel-
based dense 3D reconstruction approach from monocular
imagery [15]. This approach works well for small scale
environments and requires prior knowledge for a bound-
ing box that contains the scene, limiting the accuracy of
the 3D reconstruction to the voxel grid resolution. Both
approaches [16, 15] require many redundant viewpoints to
get accurate results. Our application target is a continuously
moving mobile platform, where objects can be observed only
over short periods of time.

The approach most similar to ours is theStereoScan
system described in [7]. In this approach, the authors propose
a dense 3D reconstruction pipeline fusing information from
dense disparity maps obtained from stereo imagery. In order
to deal with the large amount of data from the fusion
of multiple disparity maps, the authors propose a greedy
approach for solving the data association problem between
two consecutive stereo frames. This greedy approach simply
reprojects reconstructed 3D points of the previous frame into
the image plane of the current frame. When a point projects
to a valid disparity, the 3D points from the current and pre-
vious frames are fused by computing their 3D mean. Similar
to our approach, the authors assume that the camera motion
is obtained from an independent visual odometry pipeline
working in parallel. The main limitation of StereoScan is
its greedy data association approach that considers only
two consecutive frames without checking for geometric and
photometric consistency between the reconstructed points.
Limiting the data association to just two frames and without
checking for geometric and photometric consistency intro-
duces many noisy points into the final model, without being
able to deal with possible artifacts caused by dynamic objects
that will corrupt the 3D model. In addition, without filtering,
the storage requirements quickly become prohibitive for
large-scale scenarios.

III. STEREOV ISION

Stereo vision makes it possible to estimate 3D scene
geometry given only two images from the same scene. We
consider a conventional stereo rig in which two cameras are
separated by a horizontal baseline. Rectification [10] con-
siderably simplifies the stereo correspondence problem and
allows for straight-forward computation of dense disparity
maps, which form the base for the dense 3D reconstruction.
Each value in the disparity map can be reprojected to a
3D point hi = (x, y, z)

t
∈ R

3 with respect to the camera
coordinate frame based on the projective camera equations:

z = f · B
uR−uL

= f · B
du

x = z · (uL−u0)
f

y = z · (v−v0)
f

(1)

wheref is the camera focal length,(u0, v0) is the principal
point, B is the stereo baseline and(uL, vL) and (uR, vR)
are the stereo measurements in the left and right images,



respectively. Note that for rectified stereo imagesvL = vR =
v. The horizontal disparitydu is the difference in pixels
between the horizontal image projections of the same 3D
point in the right and left images.

Similarly to [14], our sensor error model is composed of
two parts:pointing error σp andmatching error σm. Pointing
error is the error in image measurements due to camera
calibration inaccuracy, whereas matching error is due to the
inaccuracy of the stereo matching algorithm. Given these
values, we can compute the covariance matrix of the stereo
measurements(uL, v, du)

t in the disparity space as:

Si =
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To obtain the covariance matrixPi of the reconstructed 3D
point hi associated with stereo measurements(uL, v, du)

t,
the error is propagated from the 2D measurement space to
3D by means of linear uncertainty propagation as:

Pi = Ji ·Si · J
t
i (3)
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whereJi is the Jacobian of the 3D pointhi with respect to
the stereo measurements(uL, v, du)

t. The covariance matrix
Pi estimates the uncertainty we can expect from a recon-
structed 3D point. The uncertainty error grows quadratically
with respect to the depth. We denote bywi = trace(Pi)
the trace of the covariance matrixPi, and this is used as
a measure of the uncertainty and as a weighting function
for the reconstructed 3D points and color information in our
MVS approach.

IV. D ENSE3D RECONSTRUCTION

Our approach assumes that stereo camera calibration and
motion are known. In addition, we assume that images are
given in a time-ordered sequence. Our approach is applicable
in batch as well as incremental modes. Camera motion can
be obtained online by egomotion estimation methods such
as visual odometry or after an offline bundle adjustment
optimization including possible loop closure constraints.

Our dense reconstruction approach has these main steps:

1) Dense stereo matching.
2) Patch-based reconstruction with multi-view geometric

and photometric consistency analysis.
3) Outlier removal and voxel grid filtering.

We first select a subset of stereo keyframes from the input
images to enforce a minimum distance in camera motion
between frames which will be processed. This is to avoid
adding redundant images which would not contribute any
new information to the dense 3D model, but only increase

computational complexity. Each stereo keyframeFk with
k = 1 . . . N comprises:

• Camera rotation,Rk ∈ SO(3).
• Camera translation,tk ∈ R

3.
• Left rectified RGB image,IkL: R2 → R

3.
• Normalized zero mean and unit variance left rectified

RGB image,IkLnorm: R2 → R
3.

• Right rectified RGB image,IkR: R2 → R
3.

• Disparity map,IkD: R2 → R.
The camera rotation and translation are defined such that a

3D pointYi = (x, y, z)
t
∈ R

3 in the world coordinate frame
can be transformed into the camera coordinate frame with:

hi = Rk
(

Yi − t
k
)

(5)

and assuming a pin-hole camera model, the projection of
the 3D pointhi into the image plane is:

Ui = K
(

Rk
(

Yi − t
k
))

(6)

whereK is the matrix representing the camera intrinsics
andUi = (u, v, 1)

t is the vector of pixel measurements in
homogeneous coordinates. In addition, each3D point hi has
an associated RGB color vectorci = (r, g, b)

t
∈ R

3. Now,
we will describe in detail each of the main steps in our MVS
algorithm.

A. Dense Stereo Matching

Reliable stereo matching is critical in order to obtain
accurate dense 3D point clouds. For this purpose, we use
the Efficient Large-Scale Stereo Matching (ELAS) method
which is freely available [6]. ELAS provides dense high
quality disparity maps without global optimization, while
remaining faster than many other stereo methods. For each
stereo keyframeFk we obtain a dense disparity mapIkDisp

image from the left and right rectified images.

B. Multi-View Geometric and Photometric Consistency

Considering that each stereo frame gives rise to thousands
of 3D points, transforming all of these into a global 3D
model would yield a very noisy reconstruction with lots
of redundant points, and consequently storage requirements
of prohibitive proportions for large scenarios. Therefore, to
avoid the introduction of many redundant points we solve the
data association problem between multiple stereo frames and
verify geometric and photometric consistency for all points.
This is in principle similar to the photometric consistency
employed in MVS approaches [9, 4] with the key difference
that for each pixel we rely on the depth provided by the stereo
matching algorithm instead of minimizing a photometric cost
function to find the globally optimal depth of each patch.
Figure 2 depicts a graphical example of our multi-view stereo
approach considering three views.

We choose a central reference stereo keyframeFr in a
local neighborhood ofm stereo views (in our experiments
we considerm = 3, 5). The index of the reference stereo
keyframer in the local neighborhood ofm stereo frames is
taken as the central view,r = (m− 1) /2 + 1.



Fig. 2. Multi-view stereo approach checking geometric and photometric
consistency. For a pixelp in the left reference image that has a valid
disparity, we check first for geometric consistency between the different
views. If the geometric consistency is successful, we perform the photo-
metric consistency analysis.

For each pixelp = (uL, vL) from the left reference
keyframe imageIrL which has a valid disparitydu, we first
perform a geometric consistency check with respect to the
other views in the neighborhood. We compute the 3D point
hi and the associated covariancePi as described in Eq. 1
and Eq. 3 respectively. If the trace of the covariance matrix
wi is below some thresholdTcov, we then project the point
hi into the left images for the otherm − 1 views in the
neighborhood. We then check that the projection of each 3D
point hi from the reference view into neighboring frames
has a valid disparity and low uncertainty. Finally, we also
check that the 3D difference between all reconstructed 3D
points expressed in the world coordinate frame is within a
thresholdTdist.

For all 3D points from the reference image which passed
the geometric consistency check, our algorithm then proceeds
to a photometric consistency check with respect to the other
views in the neighborhood. For each pixelp = (uL, vL)
from the left reference image, we compute the normalized
cross correlationNCC (Fr, Fk, p) between aµ×µ window
centered onp and the corresponding windows centered on the
projections in each of the viewsFk with subpixel accuracy.
For theNCC we use the textures from the normalized zero
mean unit variance left imagesIkLnorm. Similar to [9] we
use a version ofNCC for l-dimensional RGB color vectors
with normalization per color channel.

NCC (c0, c1) =

l−1
∑

j=0

(c0 (j)− c0) · (c1 (j)− c1)

√

l−1
∑

j=0

(c0 (j)− c0)
2
·
l−1
∑

j=0

(c1 (j)− c1)
2

(7)

The NCC returns a scalar value between[−1, 1], where
1 indicates perfect correlation. We compute an average pho-
tometric scoreg(p) that comprises the sum of photometric
scores for the pixelp between the reference image and the

rest of viewsFk ∈ V where the point is visible:

g(p) =
1

|V |

k=r+n
∑

k=r−n

NCC (Fr, Fk, p) (8)

wheren = (m − 1)/2 for the sake of brevity, and|V |
denotes the number of views where the pointp is predicted
to be visible, i.e. the number of views for which the point
passed the geometric consistency check. If the mean photo-
metric scoregp exceeds a threshold valueTphoto and |V | is
3 or greater, we proceed to fuse the 3D point with respect
to the world coordinate frame and color information into the
dense reconstruction as the following weighted average:

Yi =

k=r+n∑

k=r−n

wi,k ·Yi,k

k=r+n∑

k=r−n

wi,k

, ci =

k=r+n∑

k=r−n

wi,k · ci,k

k=r+n∑

k=r−n

wi,k

(9)

wherewi,k is the uncertainty weight of the reconstruction
of point hi from the viewk. Similarly, Yi,k andci,k denote
the 3D point with respect to the world coordinate frame and
color information for pointi from view k.

In order to reduce computational complexity and to avoid
adding redundant 3D points as the neighborhood window
slides through the sequence, we keep track of image projec-
tions of already reconstructed 3D points in their respective
images using a mask. In this way, for each new reference
view, we check the visibility masks to reconstruct only those
3D points which were not reconstructed previously.

C. Outliers Removal and Voxel Grid Filtering

Once we have computed a dense 3D point cloud from
a reference stereo keyframeFr, we filter possible outliers
by means of aradius removal filter. This filter removes
those 3D points that do not have at least some number
of neighbors within a certain range. Then, in order to
reduce the computational burden and storage requirements,
we downsample the 3D point cloud using a voxel grid filter
that fits to the dimensions of the input point cloud. In each
voxel, the 3D points are approximated with their centroid,
representing more accurately the underlying surface.

Once we have processed one stereo keyframe, we repeat
the same procedure for the next keyframe until the sequence
finishes. After processing all stereo keyframes, we apply the
voxel grid filter over the whole dense 3D point cloud to fuse
the 3D points into a global voxel grid structure. This is done
mainly for those sequences where the vehicle or robot comes
to areas that were previously mapped.

V. RESULTS

We use the KITTI visual odometry RGB dataset [8] for
the evaluation of our dense 3D reconstruction approach.
This dataset consists of stereo imagery with accurate stereo
calibration. The images have a resolution of1241 × 376
pixels. For the greedy projection surface reconstruction and
the radius removal and voxel grid filters, we use the efficient
implementations from the Point Cloud Library (PCL) [17].

Typical values for the parameters in our method are:σp =
0.5 pixels, σm = 1.0 pixel, Tcov = 0.5, Tdist = 0.5 m,



Tphoto = 0.7 and patch size7× 7 pixels. All timing results
were obtained with an Intel Core i7-3770 CPU.

A. Comparison to PMVS and StereoScan

We compare our dense 3D reconstruction approach to
PMVS and StereoScan. For PMVS we use the PMVS2
implementation1. We configure PMVS options so that it
processes images in sequence, enforcing the algorithm to use
only images with nearby indices to reconstruct 3D points. For
the StereoScan case we use our own implementation and fuse
the information between two corresponding 3D points if both
disparities are valid and the distance between reconstructed
3D points is below the thresholdTdist. In our method we
considerm = 3 views, a voxel grid resolution of 5 cm and a
photometric consistency thresholdTphoto = 0.7. This value
is also used in PMVS.

Figure 3 depicts a comparison of our method to PMVS
and StereoScan showing the computation time versus the
number of input images for the first sequence in the KITTI
dataset. We observe that our method is the fastest one. The
reason why it is faster than StereoScan is due to the use
of a visibility mask, keeping track of image projections of
the reconstructed 3D points in their visible images, reducing
computational complexity. PMVS is highly time consuming
even for a small set of images. This is because it tries
to optimize the 3D position and normal of each patch in
each reference image by minimizing a cost function based
on the photometric error in a multi-view setup. In contrast,
our method and StereoScan use the available 3D geometry
from the disparity map and perform data association between
different views, which is faster than running an iterative non-
linear optimization per patch.
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Fig. 3. Comparison to PMVS and StereoScan: Computational time vs
number of images.

Figure 4 shows a comparison of our method to PMVS
and StereoScan showing the number of reconstructed 3D
points versus the number of input images. The number of

1Available from:http://www.di.ens.fr/pmvs/

reconstructed 3D points in the StereoScan case was scaled
down by a factor of ten for clarity reasons. StereoScan
produces large amount of 3D points, some of which are
noisy and redundant. In large-scale environments the stor-
age requirements of StereoScan can become prohibitive. In
contrast, our method returns a more reasonable number of
3D points. In addition, one can control the output number
of 3D points with the photometric threshold and the voxel
grid resolution. PMVS returns the lowest number of recon-
structed 3D points. PMVS is more targeted toPhotosynth-
type systems [1], where there is a large number of images
from the same object in a small area. In this case, redundant
viewpoints improve the estimation of the patch geometry.
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Fig. 4. Comparison to PMVS and StereoScan: Number of reconstructed
3D points vs number of images. Note that the number of reconstructed 3D
points that is reported for StereoScan is scaled by a factor of ten for clarity
reasons.

Table I shows information about the number of recon-
structed 3D points at each level of our MVS approach con-
sidering two different photometric thresholdsTphoto = 0.2
andTphoto = 0.8. In addition, we also show the percentage
between the number of accepted points at each step and the
number of points that have a valid disparity for each stereo
frame. We can observe that in both cases the number of
3D points obtained after the voxel grid filtering is a small
fraction of the original number of points facilitating storage
requirements in large-scale scenarios.

B. Detection of Moving Objects

One of the nice properties of PMVS and similar patch-
based methods such as ours, is that they can discard specular
highlights or moving objects in the scene (pedestrians, cars,
etc.). Assuming that the surface of an object is Lambertian,
the photometric score functiong(p) will give low scores for
areas which have specular highlights or moving objects in the
image, and therefore these points will not be added to the
final 3D model. Figure 5 depicts an example of one sequence
where there are several moving objects (cars). StereoScan

http://www.di.ens.fr/pmvs/


Step Our method Our method
Tphoto = 0.2 Tphoto = 0.8

# Points Disparity 323,420 323,420
# Points Geometric 133,334 133,334

% Accepted 41.23 41.23
# Points Photometric 57,675 9,310

% Accepted 17.83 2.88
# Points Fusion 8,851 1,885

% Accepted 2.74 0.58

TABLE I

AVERAGE NUMBER OF RECONSTRUCTED3D POINTS PER STEP AND

PERCENTAGE OF ACCEPTED POINTS WITH RESPECT TO POINTS WITH

VALID DISPARITY PER STEREO FRAME.

fails to reject these points and adds them to the final model,
creating artifacts in the final model. This occurs because
StereoScan only considers two consecutive stereo frames for
data association based on the disparity information. In such
a limited multi-view setup moving objects are not detected
properly. In contrast, our method and PMVS are able to
discard those 3D points from the final model.

Fig. 5. Detection of moving objects. Top: Two frames from a sequence
where there are moving objects in the scene. Bottom left: viewof the dense
3D reconstruction with our method. Bottom right: view of the dense 3D
reconstruction with StereoScan. Notice how artifacts due to the moving
objects are introduced in the final model.

C. 3D Reconstruction results

Figure 6 depicts some dense 3D large-scale reconstruction
results from different viewpoints. It can be noticed that the
dense 3D point clouds contain high level of detail, enough
for visualization purposes.

D. Timing Evaluation

Table II shows average timing results for the most impor-
tant operations in our MVS approach. We can observe that
on average obtaining one incremental update to the dense
3D point cloud takes slightly less than 2 seconds for one
stereo view. This time could be further reduced by using

GPU implementations since the operations in the multi-view
3D reconstruction approach are independent per pixel.

Step Time (ms)
Stereo Matching 157.74

RGB Normalization 2.51
Multi-view 3D (m=3) 1303.28

Outlier Removal 351.32
Voxel Grid Filter 2.76

Total 1811.61

TABLE II

COMPUTATION TIMES IN MS FOR THE MAIN STEPS OF OURMVS

APPROACH.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented a novel MVS approch
for dense 3D reconstruction in large-scale environments
using stereo imagery. We have shown that efficiently fusing
disparity maps, while checking geometric and photometric
consistency of patches in a multi-view setup, yields detailed
3D models with low storage requirements.

In the future we are interested in possible applications of
the dense 3D models for planning and scene understanding.
In addition, we would like to explore the fusion of our dense
3D reconstruction approach with incremental localization
and mapping methods such as iSAM2 [12].
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