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Abstract

Bundle Adjustment (BA) can be seen as an inference process over a factor graph.
From this perspective, the Schur complement trick can be interpreted as an ordering
choice for elimination. The elimination of a single point in the BA graph induces a
factor over the set of cameras observing that point. This factor has a very low information
content (a point observation enforces a low-rank constraint on the cameras). In this work
we show that, when using conjugate gradient solvers, there is a computational advantage
in “grouping” factors corresponding to sets of points (fragments) that are co-visible by
the same set of cameras. Intuitively, we collapse many factors with low information
content into a single factor that imposes a high-rank constraint among the cameras. We
provide a grounded way to group factors: the selection of points that are co-observed
by the same camera patterns is a data mining problem, and standard tools for frequent
pattern mining can be applied to reveal the structure of BA graphs. We demonstrate the
computational advantage of grouping in large BA problems and we show that it enables
a consistent reduction of BA time with respect to state-of-the-art solvers (Ceres [1]).

1 Introduction
Efficient bundle adjustment (BA) is an important prerequisite to a number of practical ap-
plications, ranging from 3D modeling and photo tourism [25, 27], to hand-eye calibration
[13], augmented reality [22], and autonomous navigation [24]. Modern applications require
reconstruction of the 3D geometry of a scene from collections of thousands or millions of
images [2, 7, 26], hence the scalability of BA becomes a critical issue.

Standard BA is based on successive linearizations: the nonlinear optimization problem is
linearized around the current estimate and a local update for points and camera parameters is
computed by minimizing a quadratic approximation of the cost. At each step, computing the
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local update requires solving a linear system (normal equations). Besides the computational
costs of linearization, the main bottleneck is solving the linear system at each step.

The Schur complement trick is commonly used to solve only for the cameras (the reduced
camera system). The points are then updated via back-substitution. The reduced camera sys-
tem has a special sparse block structure (the secondary structure [17]), that can be exploited
by sparse direct solvers such as SBA [21] to reduce storage complexity and speed-up compu-
tation. Direct methods (dense or sparse Cholesky factorization) work well for small problem
instances (few hundred photos), while their cost becomes prohibitive for larger problems [3].

Several recent works suggest the use of iterative methods such as Conjugate Gradient
(CG) [14], for solving the symmetric positive-definite linear systems that appear in large-
scale BA problems [3, 15]. Iterative methods such as CG involve only sparse matrix-vector
multiplications, hence requiring less memory than direct methods. However, the number of
required CG iterations for convergence depends on how well-conditioned the original prob-
lem is. Therefore, preconditioning is normally used to reduce the condition number of the
original problem, speeding-up convergence of CG [4, 16, 19, 28]. Another technique that
results in the reduction of the number of CG iterations is the truncated Newton method [3],
which trades off accuracy of the solution of the linear system for computational efficiency.
The work [3] also provides the key insight that, in the CG method, the Schur complement
trick can be applied without the explicit computation of the reduced camera matrix. This im-
plicit representation is shown to be convenient (storage and computation-wise) with respect
to explicit representations, in which a large (but sparse) square matrix has to be formed.

In this paper, rather than proposing strategies to reduce the number of CG iterations, we
propose an insight that reduces the complexity of each CG iteration. We adopt a factor graph
perspective, and interpret BA in terms of inference over a factor graph. We show that the
elimination of a single point induces a factor (i.e., a probabilistic constraint) over the cameras
observing the point. The elimination of all points leads to the standard Schur complement,
while in our approach we never need to build the reduced cameras system explicitly. Reason-
ing in terms of factor graphs allows the solver to choose the best representation (i.e., implicit
vs explicit) for each factor. A factor produced by the elimination of a single point provides a
low-rank constraint on the cameras, and the use of an explicit representation is not efficient
for those. However, we show that “grouping” factors corresponding to points that are co-
visible by the same set of cameras produces a single grouped factor for which the explicit
representation can be convenient. This information compression (the grouping) can be done
in a grounded way: the grouping problem is formally equivalent to well studied problems
in data mining (e.g., frequent items mining in basket case analysis [10, 11]). We demon-
strate the proposed approach in the Bundle Adjustment in the Large benchmarking datasets
[3], showing that the grouping entails a computational advantage in the inner CG iterations.
The implementation of our approach is also shown to produce consistent advantages over
state-of-the-art implementations available online (Ceres, [1]).

2 A Factor Graph View of Bundle Adjustment
In this section we show that factor graphs provide an intuitive interpretation (and visualiza-
tion) of BA. We consider the standard setup in which N points y j ∈ R3 are observed in M
images. With each image we associate the corresponding camera parameters xi ∈ X , where
X is assumed to be a d-dimensional manifold. A frequently used model, e.g., in Bundler
[25], uses xi = (ρi,κi) with the pose ρi ∈ SE(3) and calibration κi ∈ R3, where we assume
zero skew and square pixels, but optimize the focal length and two radial distortion parame-

Citation
Citation
{Konolige} 2010

Citation
Citation
{Lourakis and Argyros} 2009

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2010

Citation
Citation
{Hestenes and Stiefel} 1952

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2010

Citation
Citation
{Jeong, Nister, Steedly, Szeliski, and Kweon} 2012

Citation
Citation
{Byröd and {Å}ström} 2010

Citation
Citation
{Jian, Balcan, and Dellaert} 2011

Citation
Citation
{Kushal and Agarwal} 2012

Citation
Citation
{Wu, Agarwal, Curless, and Seitz} 2011

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2010

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2010

Citation
Citation
{Han, Pei, and Yin} 2000

Citation
Citation
{Han, Cheng, Xin, and Yan} 2007

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2010

Citation
Citation
{Agarwal, Mierle, and Others} 

Citation
Citation
{Snavely, Seitz, and Szeliski} 2006



CARLONE ET AL.: MINING STRUCTURE FRAGMENTS FOR SMART BA 3

ters. Standard BA consists of the estimation of camera parameters and points positions from
a set of pixel measurements zi j ∈ R2, representing observations of the projection of point y j
into camera xi. Assuming Gaussian noise, BA minimizes the negative log-likelihood of the
camera parameters X = {x1, . . . ,xM} and points Y = {y1, . . . ,yN} given the measurements Z:

min
X ,Y
− logL(X ,Y ;Z) = min

X ,Y ∑
y j∈Y

∑
xi∈X j

1
2
‖π (xi,y j)− zi j‖2

Ri j
(1)

where the function π (xi,y j) models the projection of point y j into camera xi, and X j ⊆ X
is the set of cameras observing y j. ‖e‖2

Ri j
= e>R−1

i j e is the (squared) Mahalanobis distance,
where Ri j ∈ R2×2 is the measurement covariance. For sake of simplicity we assume Ri j = I
(identity matrix), while the treatment can be easily generalized to unstructured covariances.

Fu
ll

BA

Objective Function
Factor Graph

(1 factor per measurement) CG Primitive

∑
y j∈Y

∑
xi∈Xj

1
2 ‖Fi jδxi +Ei jδy j−δ zi j‖2

y2 y3 y4

x1

x2

x3

x4

x5

y5
y1

Av =

[
F>F F>E
E>F E>E

]
vNormal Equations[

F>F F>E
E>F E>E

][
δX
δY

]
=

[
F>δZ
E>δZ

]

Table 1: Standard BA. The table shows the objective function to minimize in a BA iteration
and its factor graph visualization, for a toy example with 5 cameras and 5 points. Minimizing
the objective resorts to solving the normal equations. When using conjugate gradient as the
linear solver, the key operation is the matrix-vector multiplication in the right-most column.

Problem (1) can be conveniently visualized as a factor graph [18]. A factor graph is a
bipartite graph G = {F ,Θ}, where F is the set of factor nodes, and Θ is the set of variable
nodes. The set Θ contains the parameters to estimate, which in BA are the cameras X and the
points Y . Each factor in F corresponds to a measurement zi j. An example of a factor graph
corresponding to a small BA problem is reported in Table 1, with variable nodes denoted
with triangles (cameras) and stars (points), and factor nodes denoted with dots.

A popular approach to minimize (1) is a trust-region method such as Levenberg-Marquardt
(LM) [12] or Powell’s dog leg [20, 21]. Both of these rely on successive linearizations, and,
at each iteration, solve a linear least-squares problem. In detail, at iteration τ , the reprojection
error (1) is linearized around the current estimate {X (τ),Y (τ)} and a quadratic approximation
of (1) is minimized to find the optimal update {δX?,δY ?}:

min
δX ,δY

∑
y j∈Y

∑
xi∈X j

1
2
‖Fi jδxi +Ei jδy j−δ zi j‖2 = min

δX ,δY

1
2
‖FδX +EδY −δZ‖2. (2)

Above, δX = {δx1, . . . ,δxM} ∈ RdM is the camera update, δY = {δy1, . . . ,δyN} ∈ R3N is the
point update, the Jacobians Fi j and Ei j have sizes 2×d and 2×3, and δ zi j

∆
= zi j−π(x(τ)i ,y(τ)j ).

In the last equality in (2) we rewrote the cost in matrix form, by stacking all residual errors
δ zi j into a vector δZ ∈ R2K , where K is the total number of available measurements. Sim-
ilarly, we included the Jacobians in larger (sparse) matrices F ∈ R2K×dM and E ∈ R2K×3N .
In trust-region methods the cost (2) is augmented with regularization terms, which damp
the correction {δX?,δY ?} improving convergence and stability. We omit these terms in our
derivation, and we discuss a standard damping policy in the experimental section.

Minimizing the quadratic cost (2) requires solving a set of linear equations (normal equa-
tions). The linearized cost (2) and the normal equations are reported in Table 1.
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4 CARLONE ET AL.: MINING STRUCTURE FRAGMENTS FOR SMART BA

3 Schur Complement as Elimination Ordering
Standard BA approaches, rather than solving the large system in Table 1, apply the Schur
complement trick, which allows computing the camera update by solving a smaller problem,
involving only cameras1. The reduced camera system is reported in Table 2.

In this section, we show that Schur complement can be understood as an ordering choice,
when doing inference over a factor graph. Inference over the linear factor graphs (2) is
performed by eliminating a variable at a time, according to a given ordering. When a variable
is eliminated, it is removed from the factor graph and a new factor (connecting the variables

Sc
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Objective Function
Factor Graph

(1 factor per point) CG Primitive

∑
y j∈Y

1
2

∥∥(I−E jPjE>j
)
(FjδX j−δZ j)

∥∥2

x1

x2

x3

x4

x5

Explicit form:

Ax =
(
F>F−F>EPE>F

)(∗)
Axv

Reduced Camera System Implicit form:(
F>F−F>EPE>F

)
δX = v1 = Fv

= F>(I−EPE>)δZ F>
(
v1−

(
E
(
P
(
E> (v1)

))))
Table 2: Schur complement trick. The table shows the objective to minimize after point
elimination and its factor graph visualization, for the same example of Table 1. Minimizing
the objective resorts to solving the reduced camera system. The matrix-vector multiplication
in conjugate gradient can be implemented in explicit or implicit form. (∗) The computation of
the matrix Ax has to be done only once, since Ax remains the same across the CG iterations.

linked to the eliminated variable) is added to the graph. For instance, in BA, the elimination
of a point y j induces a factor over the set of cameras X j observing that point.

In order to show how to eliminate a single point, let us rewrite (2) as:

min
δX ,δY

∑
y j∈Y

1
2
‖Fjδx j +E jδy j−δ z j‖2 (3)

where δX j is a vector including the updates for all cameras observing point y j, namely X j,
and δ z j is the vector stacking all M j measurements of point y j (M j coincides with the number
of cameras observing y j). For each point y j, we rearranged the matrices Fi j and Ei j into larger
(sparse) matrices Fj ∈R2M j×dM j and E j ∈R2M j×3, that encode the Jacobians with respect to
measurements δ z j. Since each point y j is contained in a single summand of (3), it is easy to
see that, for each camera update δX j, the optimal point update is

δy?j = argmin
δy j

1
2
[
‖FjδX j +E jδy j−δZ j‖2]= PjE>j (δZ j−FjδX j) (4)

where Pj
∆
=
(

E>j E j

)−1
is the 3× 3 covariance on the point update δy j. The fact that the

update (4) only depends on the cameras X j, can be easily understood from the factor graph
of Table 1: each point y j is only connected to a subset of cameras X j, hence it is conditionally
independent on the other variables given X j. Point δy j can be algebraically eliminated from
(3) by substituting (4) into (3). The resulting objective function is shown in Table 2. The
elimination of each point in the original factor graph induces a factor. The factor graph of
Table 2 is the result of the elimination of the points in the original factor graph of Table 1.

1Besides resulting in a smaller system, the very fact of eliminating the points yields a better conditioned system
[19, Supplementary Material].
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The reduced camera system, computed from the objective in Table 2, is the same pro-
duced by applying the Schur complement to the linear system in Table 1; hence, the Schur
complement trick can be seen as an ordering choice, in which the points are eliminated first.

Two main methods are employed to solve the linear systems in Table 1 and Table 2:
direct and iterative methods. The first class includes sparse Cholesky or QR factorization
[5, 8], while the second class is dominated by conjugate gradient (CG) methods. The key
operation in CG (called the CG primitive) is a matrix-vector multiplication Av [3], where a
vector v is multiplied by the matrix A describing the linear system. For the full BA case, the
CG primitive is reported in Table 1. When applying the Schur complement, one can compute
the Schur complement matrix Ax = F>F−F>EPE>F and implement the primitive as Axv.
The corresponding techniques are usually called explicit methods. However, as pointed out
in [3], one can perform the CG primitive implicitly, without forming Ax; the implementation
of the CG primitive in explicit and implicit methods is reported in Table 2.

4 Speeding-up CG Iterations via Grouping

In this section, we first discuss the computational trade-off between implicit and explicit
methods for conjugate gradient. Then we show that we can improve computation by group-
ing factors corresponding to points that are co-visible by the same pattern of cameras.

The complexity of a CG iteration is dictated by the complexity of the CG primitive, i.e.,
the matrix-vector multiplication. In order to quantify this complexity, let us consider a BA
instance in which Nk points are observed by all cameras in the set Xk, with |Xk|= Mk.

An explicit method would compute the CG primitive as Axv, see Table 2. Since all points
are seen by all cameras, the matrix Ax is dense, and the matrix vector multiplication requires
(dMk−1)dMk flops, which entails a complexity O(M2

k ) . Storage is also quadratic in the
number of cameras. In [3] it has been pointed out that a more efficient implementation
can be obtained using implicit Schur complement, see Table 2. Counting the number of
flops of each matrix-vector multiplication in this primitive, one gets a complexity that is
O(K), where K is the total number of measurements. Recalling that each point is seen by all
cameras K = MkNk, and the complexity of the implicit CG primitive becomes O(NkMk).

This simple computation of the complexity reveals an interesting trade-off: when a set of
cameras observes few common points, implicit methods are convenient, implying complex-
ity O(NkMk). However, when the cameras observe many common points, explicit methods
become advantageous: O(M2

k ) becomes better than O(NkMk) for Nk larger than Mk.

4.1 Factor Grouping

In our complexity analysis, we assumed the Nk points are observed in all cameras. This is not
always the case in BA. Therefore, how can we exploit this insight in general BA instances?

The factor graph perspective gives an easy way to reason in terms of factors, rather than
working on the overall matrix describing the system. For instance, in Table 2 we can see the
contribution of each point to the overall cost. Similarly, we can express the primitive Axv
as a sum of contributions of each factor, i.e., Axv = ∑y j∈Y Â jv, where Â j is the contribution
of factor j to the Schur complement matrix; from the objective function in Table 2 one can
verify that the matrix Â j is an augmented version of A j =F>j Fj−F>j E jPjE>j Fj, with suitable
zero blocks for padding: the zero blocks compensate for the fact that the factor only involves
cameras X j, while the vector v has the same size of X .
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Now the first question one may ask is: what is the most efficient representation (implicit
or explicit) for a single factor? A single factor encodes a point observation from M j cameras.
Therefore, the cost of the explicit multiplication Â jv in CG is O(M2

j ) (A j ∈ RM j×M j is the
only nonzero part of Â j). The dense matrix A j, that encodes the factor, carries a very low
information content: A j is always be rank-deficient, as each camera brings a 2-dimensional
measurement, but adds d unknowns. Therefore an explicit method would spend O(M2

j )

flops in Â jv, while adding a small piece of information in the overall multiplication Axv.
This would suggest to always choose an implicit representation, which implies a costO(M j)
(each factor includes a single point). In this section, we show that this is not the case.

In BA, it is common that many points are co-observed by a set of cameras. If the same
set of cameras Xk observes many points (Nk), instead of using an implicit representation
(O(NkMk)), we can “group” these points in a single factor and use an explicit representation
for such factor, which is convenient for Nk>Mk. Grouping is easy: it only requires summing
the matrices A j, produced by each point y j in the group; furthermore, after grouping, we need
to store a single dMk×dMk matrix, independently on the number of co-observed points.

G
ro

up
in

g

Objective Function
Factor Graph

(1 factor per group) CG Primitive

x1

x2

x3

x4

x5

∑
k∈groups

(
Âkv
)

∑
k∈groups

1
2

∥∥∥(I−
(
EG

k

)
PG

k

(
EG

k

)>) (FG
k δXk−δZG

k

)∥∥2

for each group k:

where EG
k , FG

k include Jacobians w.r.t. Âkv is explicit if Nk > Mk

all points and cameras in the group k
Âkv is implicit if Nk ≤Mk

Table 3: Factor grouping. The objective function includes a summand (factor) for each group
of points. The matrix-vector multiplication in CG is computed as the sum of the contributions
of each factor. Depending on the number of points (Nk) and cameras (Mk) in group k, the
multiplication Âkv is computed in explicit or implicit form (as defined in Table 2).

This information compression is particularly advantageous in BA in which we find many
cameras portraying the same scene; for instance, in photo tourism, many images picture
the same monument and instead of adding a less-informative factor for each point of the
monument, we add a single grouped factor corresponding to a high-informative constraint
on the cameras observing the same scene fragment (Fig. 2).

In summary, our strategy works as follows: we group points that are co-observed by the
same cameras and we adopt an explicit representation (i.e., we explicitly compute the matrix
Âk) for the corresponding grouped factor as soon as Nk > Mk. When the latter condition does
not hold, we use an implicit representation. This strategy is also summarized in Table 3.

So far we gave the key insight on our approach; in Section 5 we provide computational
tools to find groups of points (the fragments) for which explicit representation is convenient.

5 Mining Structure Fragments

Selecting the points that are convenient to group resorts to finding large sets of points that
are observed by the same pattern of cameras. This problem is similar to other problems in
data mining literature. For instance, in market basket analysis [10, 11], one looks for items
that recur in many transactions (i.e., that are frequently bought together). Similarly, in our
problem, we look for patterns of cameras that occur in (i.e., observe) many points.
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y4

y2

y3

y5
y6

y7
y8

x1

x2
x3 x4

x5

x6

y9

y1
y10

(a)

Point Patterns Sorted

y1
{

x1 ,x2
} {

x2 ,x1
}

y2
{

x1 ,x2 ,x3
} {

x3 ,x2 ,x1
}

y3
{

x1 ,x2 ,x3
} {

x3 ,x2 ,x1
}

y4
{

x1 ,x2 ,x3
} {

x3 ,x2 ,x1
}

y5
{

x1 ,x2 ,x3
} {

x3 ,x2 ,x1
}

y6
{

x2 ,x3
} {

x3 ,x2
}

y7
{

x3 ,x4 ,x5
} {

x3 ,x5 ,x4
}

y8
{

x5 ,x6
} {

x5 ,x6
}

y9
{

x5 ,x6
} {

x5 ,x6
}

y10
{

x5 ,x6
} {

x5 ,x6
}

(b)

Root

x3

y1

x2

x1

x2

x1 y6

y2 y3 y4 y5 y7

x5

x4

x5

x6

y8 y9 y10

(c)

Figure 1: (a)BA example with 6 cameras and 10 points. (b)Transaction database with camera
patterns (sorted by support in the last column) for each point. (c) Frequent pattern tree.

More formally, each point can be seen as a transaction that involves a set of items (the
cameras). Therefore, we can define an item set X (set of cameras), and the transaction
database Y (set of points). The support of a pattern of items is the number of transactions in
which the pattern occurs. In BA the support of a pattern of cameras Xk ⊆ X , is the number
of points that are observed by all cameras in Xk, hence a set Xk will have large support if
it observes a large number of common points. In frequent pattern mining [11], given X , Y ,
and a minimum support Nmin ∈ N, one looks to the frequent item sets (of frequent patterns),
which are all the subsets of X having support larger than Nmin. In BA terminology, we look
for the sets of cameras, the frequent camera patterns, that share enough (i.e., more than Nmin)
common point observations. How can we compute the frequent item sets in BA?

Brute force approaches that check the support for each possible camera pattern are in-
tractable in general. State-of-the-art data mining algorithms [10, 11] use an efficient data
structure, the frequent pattern tree (FP-tree), to encode the database without storing an ex-
ponential number of candidate patterns. An example of an FP-tree is given in Fig. 1.

In Fig. 1a we consider a small BA example. In Fig. 1b we show the transaction database:
the first column lists the points (transactions), while the second column, for each point, re-
ports the pattern of cameras observing the point. According to [9, 10], we assign an ordering
to the cameras: we compute the support of each camera (number of points that the camera
observes) and we order the cameras from the ones with large support to the ones with small
support (last column in Fig. 1b). The FP-tree of Fig. 1c can be built from the “sorted” trans-
actions as follows. We arrange each sorted transaction starting from the root: for transaction
{x2,x1} we add a node x2 to the root, and then we add x1 as a child. Similarly, we build the
branch corresponding to {x3,x2,x1}. We create a sub-branch starting from x3 when adding
the transaction {x3,x5,x4}, since x3 was already added to the root.

The tree can be interpreted as follows: each node is labeled with a camera, say xi, and
describes a pattern: the pattern corresponding to a node can be constructed by adding, as
prefix to xi, all the cameras encountered when traversing the tree from the current node to
the root. For instance, in Fig. 1c, the node labeled with x4 describes the pattern {x3,x5,x4}
(traversing the branch, we first add as prefix x5 and then add x3). For each node, we also
record the points observed by the corresponding pattern of cameras (the y j listed in Fig. 1c).
For instance, node x4 is labeled with point y7 as the pattern (x4,x5,x3) observes that point.

After the FP-tree has been built we have to select the “fragments”, i.e., the group of points
for which an explicit representation is convenient: this is done in the following section.
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8 CARLONE ET AL.: MINING STRUCTURE FRAGMENTS FOR SMART BA

5.1 Selecting Optimal Scene Fragments

How can we use the FP-tree to find the patterns of Mk cameras observing Nk > Mk points?
We find such patterns by traversing the tree from root to leaves. If we encounter Nk points
at level Mk, we decide to create a grouped factor if Nk > Mk. For instance, let us traverse
the branch {x3,x2,x1} in Fig. 1c. When we arrive at the leaf (level 3 of the tree), we find 4
points {y2,y3,y4,y5}, hence the factors corresponding to those points are good candidates for
grouping (4 points are observed by 3 cameras). Similarly, the leaf of the right-most branch
describes three points, seen by 2 cameras {x5,x6}, hence grouping is convenient. Conversely,
point y7 is a single point observed by 2 cameras, and an implicit representation is preferable.

Before concluding about the representation for the remaining points (y1 and y6), an ob-
servation is in order. Assume that two groups of points G1 and G2 are observed by the
patterns of cameras XG1 and XG2 , and XG1 ⊇ XG2 ; also assume that we decided to use an
explicit representation for points in G1. Then, merging G1 and G2 always improves the cost
C of each CG iteration, because C(G1)+C(G2) = d2M2

1 +C(G2) > d2M2
1 = C(G1 ∪G2).

In words, the cost of treating the groups separately is the sum of the costs. Assuming an
explicit representation for group G1 implies a total cost d2M2

1 +C(G2), and this is larger (for
any nonzero C(G2)) than d2M2

1 , which is the cost of considering the two groups together (G2
involves a subset of cameras in G1, hence does not increase the size of the matrix AG1 ).

Dataset Mining time LM iter. time #fragments #grouped points

d-150-96k 0.34 11.59 2077 45984
d-182-117k 0.38 5.75 2268 61367
l-1118-118k 0.34 5.87 3507 67287
l-1469-145k 0.41 3.18 4347 83400
t-170-49k 0.12 5.57 1197 31809
t-215-56k 0.13 5.86 1342 37381

Figure 2: (a) Example of a fragment (set of points in violet) seen by 3 cameras (in red). (b)
Statistics regarding grouping, including time spent in mining, average time for a single LM
iteration, number of fragments, and total number of points in the fragments.

According to this observation, once we committed to group a set of points observed by a
pattern of cameras Xk, it is always convenient to add to the group the points that are observed
by a subset of Xk. Therefore, in the example of Fig. 1 we can safely group y1 and y6 with
{y2,y3,y4,y5}. The FP-tree further simplifies this operation: by construction, if we start
from a node, corresponding to a pattern Xk, and we move towards the root, any point that we
encounter is seen by a subset of Xk. Therefore, if we decided to group points corresponding
to a leaf, we can safely include in the group all points in the corresponding branch.

A general algorithm works as follows: we traverse each branch of the tree from root
to leaf and we find the set of points that is worth grouping (Nk > Mk). If we find one, we
traverse the branch towards the root and we also add the points encountered along this path.
Finally, for the remaining points, we check if it is possible to include them in other groups,
otherwise we adopt an implicit representation for them.

6 Experiments
We tested our approach in the Bundle Adjustment in the Large benchmarking datasets [3].
We use acronyms for the datasets, e.g., the dataset Dubrovnik with 150 cameras and 95821
points is denoted with d-150-96k. Similar labels are used for Ladybug(l) and Trafalgar(t).
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(a) (b) (c)

Figure 3: (a) Average improvement per CG iteration of gCG w.r.t. iCG. Time reduction
is computed as

(
tiCG− tgCG

)
/tiCG (%), where ti is the average time for a CG iteration in

technique i. (b) Total time reduction of gCG w.r.t. iCG. Time reduction is computed as(
TiCG−TgCG

)
/TiCG (%), where Ti is the time to reduce the objective by 90%. (c) Total time

reduction of gCG w.r.t. cCG, using inexact Newton step:
(
TcCG−TgCG

)
/TcCG (%).

Our method is implemented in C++ and released in [6]. We solve the nonlinear optimiza-
tion (1) via successive linearization, using the Levenberg-Marquardt (LM) method [12]. LM
adds damping terms to the cost (2), which, in a factor graph perspective, can be seen as
priors on cameras and points. After linearization, we use preconditioned conjugate gradient
to solve the reduced camera system. Before running CG, we group points as discussed in
Section 5. For fragment mining, we implemented our own algorithm akin to FPmax [9]: this
returns the sets of points (the fragments) for which an explicit representation is convenient.
The others are represented as implicit factors. We refer to the corresponding method as gCG.

We compare our technique against one using an implicit representation for all factors.
The implicit method, lately called iCG, has been implemented and released in [6]. In order
to show improvements w.r.t. the state-of-the-art, we also compare our technique against a
state-of-the-art solver available in the Ceres optimization suite [1]. This is the Iterative
Schur Solver, lately called cCG. We use a Block-Jacobi preconditioning [3] in all techniques.

Fig. 2 shows an example of fragment, corresponding to a large set of points seen in 3
cameras. The figure also contains a table with statistics on grouping. For a meaningful subset
of datasets we report the time required to build the FP-tree and find the groups (“mining
time” column), and the average time for an LM iteration: the time spent in data mining is
negligible. The last two columns report the number of groups and the total number of points
for which the explicit representation was preferable.

Fig. 3(a) shows the time improvement in the CG iterations, comparing gCG and iCG.
Datasets, on the x-axis, are sorted in increasing time improvement. Grouping entails a re-
duction in the CG iteration time that ranges from 5% to 50%. The advantage varies across
the datasets as it depends on the structure of the problem (i.e., existence of many fragments).

Fig. 3(b) shows the reduction in the total optimization time, comparing gCG and iCG.
This is computed as in [3]: normalizing the objective function between 1 (initial cost) and
0 (minimum final cost across the compared techniques), we measure the time required to
reduce the cost by 90%. The figure shows that grouping reduces the total optimization
time by 10-25%; the overall advantage is smaller than the advantage shown in Fig. 3(a),
as the total time also includes other costs (e.g., linearization) that are not influenced by the
grouping. In some cases, a single LM iteration suffices to reduce the error by 90% in both
techniques, but, for numerical differences, iCG performs less CG iterations, hence being
faster. This corresponds to the negative bar in Fig. 3(b). As future work, we plan to adopt a

Citation
Citation
{etprotect unhbox voidb@x penalty @M  {}al.} 2014

Citation
Citation
{Hartley and Zisserman} 2000

Citation
Citation
{Grahne and Zhu} 2003

Citation
Citation
{etprotect unhbox voidb@x penalty @M  {}al.} 2014

Citation
Citation
{Agarwal, Mierle, and Others} 

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2010

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2010



10 CARLONE ET AL.: MINING STRUCTURE FRAGMENTS FOR SMART BA

different performance metric that is not affected by those fluctuations.
For a fair comparison against Ceres, we implemented an inexact Newton step [3] in gCG.

Fig. 3(c) shows the total optimization time when using inexact Newton step, comparing gCG
and cCG. Grouping leads to a time reduction of 50% (averaged across all datasets), with
peaks reaching 80%; only in few cases cCG was able to beat gCG, due to early termination in
cCG. We include more comments and results in the supplemental material, attached to this
paper, to show that this advantage is consistent across a large variety of tests.

7 Conclusion
Interpreting bundle adjustment as an inference process over a factor graph improves under-
standing and visualization of the structure of the underlying optimization problem. More-
over, when using conjugate gradient, it allows for the selection of the best representation for
each factor, without committing to a single choice over the entire reduced camera matrix, as
is done in previous work. After point elimination, the factor graph modeling BA includes a
single factor for each point. For these factors, explicit representation is not efficient, and im-
plicit Schur complement is preferable. However, if we group factors corresponding to many
points that are co-visible by the same set of cameras, the explicit representation becomes
advantageous in terms of computation. After providing this insight, we show how to apply
data mining tools to find the set of points (the fragments) that is convenient to group. Ex-
perimental results confirm our findings and show that the grouping entails a computational
advantage in CG-based linear solvers, outperforming state-of-the-art implementations.
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